

GViM: GPU-accelerated Virtual Machines

Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan Kharche @ Georgia Tech Niraj Tolia, Vanish Talwar, Partha Ranganathan @ HP Labs

Trends in Processor Hardware

....Multicore

Hyperthreaded multicore

Multicore with accelerators (off-chip)

Heterogeneous multicores (on + off chip)

Possible Application Domains

Media and image processing:

- Snapfish-like image processing suite
- Image compression/decompression
- Denoising
- Filtering
- Transforms

Scientific computing, Visualization:

- Electromagnetic simulation
- Ray tracing

Financial analysis:

- Black Scholes
- Stock Portfolio Risk Analysis
- Credit derivatives processing
- Random number generators

Linear algebra and others:

- Dense Matrix Multiplication
- AES256 encryption/decryption
- Large data sorting
- Database operations

Virtualized Heterogeneous Multicores

Virtualizing Heterogeneous Multicores

GViM: GPU-accelerated Virtual Machines

Heterogeneity of access \rightarrow	'Amorphous' images of machine resources to applications
Complexity due to changing programming constructs →	Improved programmability and portability
Memory layout & access patterns →	Efficient accelerator virtualization
Compute times and data transfer speeds \rightarrow	Coordinated resource management (Future work)
Programming models for heterogeneous systems →	Beyond scope
Varying ISAs →	Beyond scope

Outline

Motivation

- System architecture
 - Virtualized Homogeneous Multicore Systems
 - Virtualization of Accelerator based Systems
 - GPU Virtualization
- Management extension
- Evaluation
- Related work
- Future work and conclusion

Virtualized Homogeneous Multicore Systems

Hypervisor

General purpose multicores

Traditional Devices

Virtualization of Accelerator based Systems Extending Xen for GPU

NVIDIA's CUDA – Compute Unified Device Architecture for managing GPUs

Georgia College of Tech Computing

LABS

GPU Virtualization – Components

GPU Virtualization – Execution Path

(LABS^{hp})

GViM Memory Management

- 'Closed' accelerator GViM's smart data movement
- In non-virtualized case (application in Dom0)
 - Pageable memory allocate in DomO using malloc
 Pinned memory use mapped memory from GPU
- From guest domain to backend
 - 2-copy allocate in guest using malloc
 - 1-copy mmap pre-shared memory from Frontend
 - Bypass mmap the DomO pinned memory from Frontend
 - Desirable (future work)
- More details in the paper

12

Outline

- Motivation
- Tasks for summer
- System architecture
- Management extension
 - Scheduling in DomO
 - Algorithms
- Evaluation
- Related work
- Future work and conclusion

Scheduling in Dom0 – Management extension

Scheduling Algorithms

- Round robin (RR)
 - Some guest domain chosen every period
 - Poller monitors its queues for the period
 - Moves to the next domain
- XenoCredit
 - Guests get credits assigned to them at boot time
 - Use these credits to calculate proportions
 - Poll domains for time proportional to their credits

Outline

- Motivation
- Tasks for summer
- System architecture
- Management extension
- Evaluation
 - Testbed details
 - Benchmarks
 - Results
 - Discussion
- Related work
- Future work and conclusion

Testbed Details

• Hardware configuration:

- Xeon quad-core @ 2.5GHz and 2GB memory
- NVIDIA 8800 GTX PCIe card
- NVIDIA 9800 GTX PCIe card
- Software configuration
 - Xen 3.2.1 running 2.6.18 Linux kernel
 - CUDA SDK 1.1 with gpu driver 169.09

Benchmarks

- Matrix multiplication (MM[2K])
 - Used 2048x2048 floating pt. matrices for the numbers
- BlackScholes (BS[1m,512])
 - Financial algorithm for calculating call and put option prices (1 million for testing)
 - Configurable number of iterations
- FastWalshTransform (FWT[64])
 - Class of generalized Fourier transformations
 - 64MB in input and output buffers

Microbenchmark and bandwidth test from CUDA SDK

CUDA Calls Virtualization Overhead

LABShp

Benchmark Evaluation

BlackScholes: XenoCredit vs. Round Robin

- BlackScholes with 60000 options and 4096 iterations
- Host with 2 GPUs and 4 guests

VMs	Credits	Expected	RR	XC
		iter/ms		
VM1	512	1.8	2.632	1.867
VM2	256	2.4	2.567	3.12
VM3	256	2.2	2.804	3.213
VM4	256	2.54	2.901	3.45

Motivates new methods for resource management in accelerator-based systems

22

Summary

- Trend towards heterogeneous multicores
- Virtualization has advantages
- Efficient GPU virtualization solution
- Proposed scheduling extension
- Evaluation

Ongoing and Future Work

Ongoing

- Memory bypass solution
- Scheduling in Dom0

Future

- Heterogeneous multicore scheduling
- SLA management policies
- Scalability and stability models/analyses
- Power-awareness in the scheduler

