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Abstract

We propose an architecture to harness the com-
paratively low computational power of geograph-
ically concentrated mobile devices (such as in a
wireless ad hoc network, especially a sensor net-
work) to build a wireless ad hoc lattice computer
(WAdL). WAL is a cellular automaton-like ar-
chitecture designed to analogically simulate the
unfolding of a physical phenomenon (e.g., fluid
flow, system of moving, interacting objects, etc.)
in the bounded region of euclidean space repre-
sented by the underlying virtual lattice of WAdL.

In this paper we present a constant time algo-
rithm for the mobile devices in a given geographic
area to form a wireless ad-hoc (2-dimensional)
lattice computer.

1 Introduction

Scientific computing largely deals with the pre-
diction of attribute values of objects participat-
ing in physical phenomena. Usually the unfold-
ing of these phenomena involves motion of the
participating objects. There are no known an-
alytical solutions for some physical phenomena,
and the only apparent method of prediction is the
analogical simulation of the unfolding of the phe-
nomenon in a cellular automaton-like architec-
ture — a lattice computer — representing the re-
gion of euclidean space in which the phenomenon

unfolds [7]. Lattice computers are massively par-
allel machines where the processing elements are
arranged in the form of a regular grid, and where
the computational demand on each individual
processing element is quite low [8, 3, 9]. Each
processing element represents a point/region of
euclidean space. In analogical simulations on a
lattice computer, the motion of an object across
euclidean space is carried out as a sequence of
steps, uniform in time, where in each step the
representation of the object may move from one
processing element to a neighbour, as defined by
the underlying grid of the lattice computer [11].

The proliferation of portable, wireless comput-
ing devices (e.g., cell phones, PDAs) promises
the availability of a large number of computing
devices in a relatively small geographic region.
Much research has been focused on creating ad-
hoc networks using such mobile devices, and the
applications for such networks are primarily for
individual gain by end users (e.g., e-commerce for
the owner of a device in the network). When such
devices are equipped with sensors, the resulting
wireless sensor networks are typically used for
data acquisition; each sensor collects data from
its surroundings and conveys that information to
a central processing unit for analysis and for ini-
tiating some action.

Such an ensemble of wireless devices (comput-
ing devices and/or sensors), despite their lim-
ited computational capacity, and limited range
of communication, provides a rich infrastructure



for creating a wireless ad-hoc lattice computer
(WAdL). We propose the WAL architecture as
a wireless ad-hoc distributed computing environ-
ment for harnessing the collective computing ca-
pabilities of the devices for the common cause of
scientific computing.

In this paper we first give a brief overview of
our proposed architecture for a WAdL! and then
focus on the formation of a lattice from a col-
lection of mobile devices in a given geographic
region. In particular, we show that such a lattice
can be formed in constant time.

The rest of this paper is organised as follows:
We discuss analogical simulations in more detail
in Section 2. Section 3 describes in brief the ar-
chitectural frame-work of WAdL. In Section 4 we
develop the mathematical basis for lattice forma-
tion, and thus show that the underlying lattice
for a WAdL can be formed in constant time.

2 Analogical Simulations

A physical phenomenon is a development in a
region of euclidean space over a period of time.
At each instant in time (in a given time pe-
riod), the set of objects participating in the phe-
nomenon, together with their attribute values
(such as speed, spin, etc.) at that time, com-
pletely describes a snapshot in the unfolding of
the phenomenon. Most problems in scientific
computing are about phenomena whose unfold-
ing involves the motion of participating objects
in euclidean space. Solutions to these phenom-
ena usually involve determining (predicting) the
attribute values of objects over time. Some phe-
nomena can be solved analytically using closed
form functions of time. On the other hand, there
are phenomena where the only apparent method
for predicting the attribute values of participat-
ing objects at any instant in time, is to simulate
the unfolding of the phenomenon up through that
instant of time [5, 7].

When carried out on a digital computer such
simulations, necessarily, develop in a discretized
representation of a region of euclidean space, and
over discrete time units. Moreover, such simu-
lations must use, at any given instant of sim-

LA paper describing in detail our proposed WAdL ar-
chitecture, including mechanisms for handling fault tol-
erance, and presenting a simulation of the proposed ar-
chitecture for an application is currently under review for
publication.

ulation time, only information available locally,
at a discrete point in the represented euclidean
space, to compute the attribute values of partic-
ipating objects at the next instant of simulation
time. Cellular automaton machines [9] and lat-
tice computers [3] provide the necessary frame-
work for a discretized representation of euclidean
space in which to carry out such simulations.
Several physical phenomena, including spherical
wavefront propagation [2] and fluid flow [6, 12],
have been successfully simulated on such a frame-
work where the simulation algorithms do not use
the traditional analytical models for the phenom-
ena.

3 The WAL Architecture

The goal of the WAdL architecture is to use the
participating mobile devices (henceforth referred
to as nodes) in a geographic area to discretize a
bounded region of euclidean space, B, and then
carry out analogical simulations of physical phe-
nomena, in this discretized representation of B us-
ing the methodology proposed in [3]. The model
described in [3] uses a root lattice as the dis-
cretized representation of a bounded region of
euclidean space. There is a processor at each lat-
tice point, and this processor, say at lattice point
p, can communicate with only its neighbours in
the lattice, i.e., those processors at lattice points
g such that (¢ — p) is a minimal length vector in
the lattice. Each of these processors is required
to have minimal computational ability.

Hence, in a WAL, the participating nodes
(mobile devices in the given geographical region)
are logically organised so that each node is re-
sponsible for a point of a bounded piece of a root
lattice L; This piece of L represents B.2 The log-
ical organisation of the nodes is such that each
node, responsible for a lattice point p, is within
communication range of all nodes responsible for
any lattice point ¢ where (¢ — p) is a minimal
length vector in the lattice.

We assume that each participating node has
some, minimal computational and storage facili-
ties, is equipped with some form of location ser-

2 A lattice, by definition, is an infinite object. Nonethe-
less, for expositional convenience, henceforth in this pa-
per, by lattice we will mean a finite piece. Thus, it is
reasonable for a lattice to represent a bounded region of
euclidean space, to count the number of points in a lattice,
etc.



vice, e.g., GPS, and has some communication ca-
pabilities, e.g., Bluetooth.

A WAJL consists of a single immobile node or
a base-station (denoted by I) designated as the
manager, and a collection of mobile devices as the
nodes in the lattice computer. I fixes a lattice, L,
with a fixed origin, in its region of influence, and
then, each lattice point, p, is assigned all mobile
devices within the Voronoi cell® around p. Note
that several devices may be assigned to the same
lattice point. Section 4 provides details on this
assignment of devices to lattice points.

Once a WAAL is formed, I initiates the simula-
tion of a physical phenomenon in the underlying
lattice computer formed from the mobile devices
in B. Since several devices may be assigned to
one lattice point, p, they elect a leader primarily
responsible for p; all the other devices assigned to
p also carry out the computations performed by
the leader, so that if and when the leader moves
out of the Voronoi cell of p, another device as-
sumes leadership and the overall simulation can
continue seamlessly.

Depending on the application, it may be nec-
essary to perform the simulation in a virtual root
lattice V' whose dimension is higher than that of
the lattice L formed from the devices in the re-
gion. In this case, the application provides the
mechanism for establishing the correspondence
between L and V, and hence, in this paper we
focus only on the formation of a 2-dimensional
lattice L.

4 Lattice Formation

As noted in the previous section we will focus on
2-dimensional root lattices, and hence, we will re-
strict our attention to the square lattice (Z?), and
the cellular lattice (Az), the only root lattices in
2-dimensional euclidean space. (Technically, Z*
is the square lattice with minimal distance 1, and
A, is the cellular lattice with minimal distance
V/2; for expositional convenience, by Z* and A,
we simply mean lattices that are generated by
equal, orthogonal basis vectors, and equal basis
vectors at an angle of 7/3 to each other, respec-
tively; we will denote the minimal distance in the

3The Voronoi cell around a lattice point p, by defini-
tion, is the set of points ¢ in euclidean space such that ¢
is closer to p than to any other lattice point.

particular lattice we use by p(Z?) and p(Asy), re-
spectively.)

4.1 Lattice Resolution

In order to map each mobile device to L, we need
to determine the resolution of L, i.e., the minimal
distance between points in L, denoted by u(L).
FEach mobile device in the region will be assigned
to a point, p, of L, such that the mobile device is
in the Voronoi cell around p in L. Clearly, then,
(L) must be chosen such that any two mobile
devices that are assigned to adjacent points in L
can communicate with each other. The following
lemma, establishes a reasonable upper bound on

u(L).

Lemma 1. Suppose the underlying lattice for a
WAdL is L. Suppose the range of the transmit-
ter/receiver of all devices in the region is at least
p- Then, devices that are assigned to adjacent
points in L can communicate with each other if

V2 . 72
) < 2+j§, if L=17
=) L2 yr=a
2rva T L=As

Proof. We will first establish an elementary
fact regarding distances between points in two
spheres.

Claim 1. Suppose Cy and Cs are two closed cir-
cles, centered at c; and ca, and with radii vy and
ro, respectively. Then, for any two points p in C
and q in Cz, d(p,q) < d(c1,c2) + 711 + 2.

Proof. [Claim 1] Using the traingle inequality, it
follows that

d(pa q) S d(pa CZ) + d(Cz, q)
S d(cla 02) + d(clap) + d(CQa q)
<

d(Cl, CQ) +7r1 +7ra.

O Claim 1

Voronoi cells around any lattice point are sim-
ply translates of the Voronoi cell around the ori-
gin of the lattice. Each face of the Voronoi cell
around the origin perpendicularly bisects some
vector in the lattice. These vectors are called rel-
evant vectors in the lattice. (See [4] for more on
Voronoi cells in lattices.) Both Z? and A,, being
root lattices, have the property that the set of
minimal length vectors is the same as the set of
relevant vectors, and hence, the Voronoi cells in



these lattices are circumscribed by spheres [10].

It can be easily verified that in the case of Z?,
2

the radius of this circumscribing sphere is £ (\% ),

n(As)
N

and in the case of Agj, it is
Clearly, every point in the Voronoi cell around
a lattice point is in the sphere circumscribing the
Voronoi cell. Let ¢t be the distance between two
devices assigned to adjacent lattice points. Then,
using Claim 1, we have an upper bound on ¢:

t<{u(L)+2-L’;’, if L = 72

pL)+2- 22 i L= A,

The two devices will be able to communicate if
the transmission range, p, of the weakest device
is more than this upper bound, i.e.,

>{M(L)+2-L§), if L =72
p>

L) +2- 22 i = A,.

Thus, solving for u(L), we have the lemma. 0O

4.2 Forming the Lattice

As noted in Section 3, we assume that all the
devices participating in the WAdL are equipped
with GPS. We will assume that the fixed de-
vice, the base-station for the WAdL, and the mo-
bile devices use the Earth-Centered, Earth-Fixed
(ECEF) coordinate system (euclidean coordinate
system, where the the center of the earth is the
origin, the X axis is defined by the intersection of
the equator and the 0 longitude, and the Y axis
is defined by the intersection of the equator and
the 90E longitude. [1]).

In a WAdL, the coordinates, I, of the base-
station are the origin of the underlying lattice,
L. The lattice L is completely specified by the
origin and a basis for the lattice. Since we are
concerned only with 2-dimensional lattices, the
basis for our lattice will have a size of two.

Definition 1. A basis {bi,b2} for a 2-
dimensional lattice L is a regular basis iff

1 |ba[] = [|b2l, and
2.

0, ifL=2
(b1, b2) = { ||b§_||2, if L=A,.

In other words, if L is the square lattice, the
basis vectors in a regular basis for L are equal in
length and at an angle of 7/2 to each other; if L
is the cellular lattice then the basis vectors in a
regular lattice for L are equal in length and at an
angle of 7/3 to each other. Note that, the length
of each of the basis vectors, in these cases, is also
the length of a minimal length vector, u(L), in
the lattice.

Based on the weakest transmitting device at
the time of first forming the WAdL, the base-
station computes the resolution of L, and hence,
the vectors, by and be such that {b, b2} is a reg-
ular basis for L. Each mobile device is sent I,
these basis vectors, and the type of lattice (Z2
or As) to be formed. We now discuss how each
mobile device can then compute the lattice point
in L that it is assigned to.

In this paper, we assume that all the mobile
devices are, indeed, in the plane of the lattice de-
fined by by and by. This is a reasonable assump-
tion to make in some scenarios, e.g., where the
participating mobile devices are sensors placed in
an open field. Dealing with the case where some
of the mobile devices may not be in the same
plane as the underlying lattice is an intriguing
problem for further research.

For the lattice L, let M (L) = {m1,ma, ..., my}
denote the set of minimal length vectors. The set
of minimal length vectors for our two lattices are
then given by

M(Z*) =
M(A-)

{bla b27 _b17 _b2}
{b1,b2, —b1, —ba, by — ba, by — b1 }.

Definition 2. A positive representation for
a point p in the lattice L is a four-tuple
(o, B,m;, mj) such that:

1. a,8>0,
2. {miym;} C M(L), and
3. p=am; + fm;.

We will sometimes write the positive represen-
tation for a point p in L as am; + fm;.

Every point in the plane of the underlying lat-
tice of a WAL is either along the line defined
by a minimal length vector, or is in the open
cone bounded by the lines defined by two mini-
mal length vectors that are orthogonal in the case
of Z2, or at an angle of 7/3 to each other in the
case of Ag. Thus it is easy to verify that



Lemma 2. Suppose L € {Z>, Ay}. Then, every
point, p, in the plane of L has a positive repre-
sentation (o, §,m;,m;) such that {m;,m;} is a
regular basis for L.

Now, Lemma 3, below, follows from the fact
that adjacent minimal length vectors are orthog-
onal in Z? and are at an angle of 7/3 to each
other in A,. Since the number of minimal length
vectors in each case is finite and computable, this
lemma effectively provides an algorithm for com-
puting a positive representation for any point.

Lemma 3. Suppose D is a point in the plane of
L and M(L) = {m1,...,my}. Then,

1. D:ami,a>0iﬁ%—l, and

2. D = am; + fmj,a, > 0, and {m;,m;} is
a regular basis for L if

(D,m;) (D,m;) ;
(a) wofwzy > O ond oy > 0 i
L=172 and

D m1
(v) (IIDIIN oy >

— A,

D)

1 1
3 ond gy > 50 if

O

Lemmas 4, 5 and 6 provide algorithms for de-
termining the lattice point p, such that a given
point D in the plane of the lattice in in the
Voronoi cell around p. Lemmas 4 and 5 are fairly
straightforward; we provide a sketch of a proof
for Lemma 6

Lemma 4. Suppose the positive representation
for a point D is am;. Then, D is in the Voronoi
cell around the lattice point rnd(a)m;. O

Lemma 5. Suppose L = Z%, and suppose the
positive representation for a point D is am; +
Bmj. Then, D is in the Voronoi cell around the
lattice point rnd(a)m; + rnd(B)m;. O

Lemma 6. Suppose L = A, and suppose the
positive representation for a point D is am; +
Bm;. Let

P = |a]m;+ [B]m;

Q = [alm;+|B] mj

R = |a|m;+ (5] mj
Dy = D-P, and
D, = D-Q.

(See Figure 1.) Then, D is in the Voronoi cell
around the lattice point

1. P, if i

IN

(D1,m;)
d e

IN
N[

1
gan

2. Q, if Lo > 3 and L) <
3. R, if —(DL’Q"") < % and —(DIH’;"") > %,
4. Q, if —(DL’;”") > % and —(Dlu’;nj) > %, and
(Daymj—mi) 1
u? =27
5 R, if —(DL’Q"“) > % and —(Dlu’;nj) > %, and
(DQ’TZ£7Mi) > %}

Proof. The expressions above compute the pro-
jection of the point D — P on m; and m; . For
example, Item (1) above computes the lengths of
the projections on both m; and mj, and if the
lengths of both the projections are no more than
half the minimal length, then D is in the Voronoi
cell around P. Similarly Items (3) and (2).
Items (4) and (5) deal with the case where the
projections of D — P on both m; and m; are
more than half the minimal length. In that case,
D is in the Voronoi cell around @ or R, and this
decision is based on the projection of D — ) on
mj —m;. (For example, the point D shown in
Figure 1 will satisfy the conditions in Ttem (5),
and thus is in the Voronoi cell around R.) O

Now, suppose a participating mobile device is
at coordinates C. It first computes it’s coordi-
nates D = C — I, relative to the origin of the
lattice. Then, using the algorithm provided by
Lemma 3, it computes a positive representation
for D. Finally, using one of the Lemmas 4, 5
and 6, as appropriate, it computes the lattice
point it is assigned to.

Thus, based on the computations involved in
the above lemmas, we have the following theo-
rem:

Theorem 1. FEach participating mobile device in
a WAdL can compute the lattice point it is re-
sponsible for in constant time. O

5 Conclusion

We propose an architecture to utilize the geo-
graphical concentration, within a bounded region
B, of mobile devices in a wireless ad hoc network
to construct a wireless ad-hoc lattice computer
(WAJL), that could be used to perform scientific



Figure 1: Computing closest lattice point in A,

analogical simulations. In the WAdL, a base sta-
tion manages the formation of the wireless ad-hoc
lattice computer from the participating devices.
In this paper we have presented an algorithm to
have each device, entering the area of influence of
the base station, compute the lattice point, in the
underlying 2-dimensional lattice, it is responsible
for. We have also showed that this computation
can be performed in constant time regardless of
the size of B. As mentioned in Section 4.2, ex-
tending our results to form a 3-dimensional root
lattice is an intriguing open problem.

We note here that the formation of a virtual
lattice out of a collection of mobile devices can
also be used effectively for routing purposes in
the resulting wireless ad-hoc network. The rich
structure of the underlying lattice will also read-
ily provide several paths between pairs of devices,
and thus could be used to address congestion is-
sues.
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