

From emitter to receiver...

- Operations on original electrical signal
- Electrical signal modulates a light source
- Transmission over optical network
 - Loss, dispersion, etc.

Georgia Institute of Technology - ECE 6543 - Romain Clédat

- Receiver must restore original signal
 - Correct for transmission problems
 - Directly correcting a specific problem
 - Treating the problems as "error during transmission"
 - Restore original signal (unscrambling)

Presentation Outline

- Context of Forward Error Correction
 - From emitter to receiver
 - Basic demodulation
- Signal characteristics
 - Transmission format
 - DC balance
- Error correction
 - Description of a code in general
 - Reed-Solomon codes
- Conclusion

Georgia Institute of Technology – ECE 6543 – Romain Clédat

Modulation and formats

- Direct modulation or indirect modulation
- Modulations:
 - OOK
 - Sub carrier
- Influences:
 - transmission quality
 - types of signals

Georgia Institute of Technology - ECE 6543 - Romain Clédat

- Formats:
 - Non Return to Zero:
 - Less frequency bandwidth
 - Problem of long sequences
 - Return to Zero:
 - Sampling needs to be more precise

DC balance

- Some signals are more equal than others...
- Problem: receiver needs to separate 1 and 0
- Solution: calculate DC component (constant)
- Implementation:
 - Invert some bits to achieve balance
 - Add balanced code to determine which bits were inverted
- Improvement:
 - Word disparity compensates code disparity

Georgia Institute of Technology - ECE 6543 - Romain Clédat

What is error correction?

- Goal: Detect and correct errors in a list of transmitted symbols
 - Symbols can be 0/1 or not (RS uses group of bits)
- Requires encoding and decoding
- Overheads incurred:
 - Time to encode and decode
 - Extra transmitted symbols
- Aimed for gains:
 - More transmission problems allowed
 - Lowered bit error rate

Georgia Institute of Technology - ECE 6543 - Romain Clédat

Description of a code in general

- (n, k) code:
 - Takes k symbols as source (data word)
 - Outputs n symbols as code (code word)
- Error correction potential:
 - t represents the number of symbol errors the code can correct
 - For block codes $2t\,{\leq}\,n-k$
- Mathematical representation:
 - Determines implementation
 - Guarantees correctness

Georgia Institute of Technology - ECE 6543 - Romain Clédat

- Goal: use polynomial arithmetic to simplify code theory
- Represent words as polynomials where the coefficients are the matrix elements given before
- All calculations are modulo operations !!

Georgia Institute of Technology - ECE 6543 - Romain Clédat

• Use a generator polynomial (code word is a multiple of this polynomial)

Georgia Institute of Technology - ECE 6543 - Romain Clédat

Link between polynomials and matrix

• Encode basis vectors and form the matrix:

$$c(x) = b(x) + x^{n-k} d(x)$$

• For example for $g(x) = 1 + x + x^3$:

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

10

- Code that works on blocks:
 - Non recursive code: independent of previous output

13

- Uses algebraic properties (field and group theory)
- In detail:
 - Operates on GF(2^m)
 - $-n = 2^{m} 1$ symbols in code word
 - k = n 2t information symbols (data)
 - -2t = n k check symbols
 - Corrects t symbol errors

Georgia Institute of Technology - ECE 6543 - Romain Clédat

Encoding with RS codes

- Choose a generator polynomial (all code words are multiples of this polynomial)
- Divide $x^{n-k}d$ by g and take the remainder
 - Usage of a division circuit
- Concatenate d and the remainder obtained above

Georgia Institute of Technology - ECE 6543 - Romain Clédat

- Operations are easily implemented in hardware.
- Very good for correcting "burst errors"

Georgia Institute of Technology - ECE 6543 - Romain Clédat

14

Conclusion

- Importance of line coding/scrambling
 - Improve chances of correctly interpreting the signal
- FEC advantages:
 - Improves BER
 - Permits more lossy network, etc.
- FEC disadvantages:
 - More overhead
 - Higher costs
 - needs consistency between end nodes
- Need to keep in mind the global picture

Georgia Institute of Technology – ECE 6543 – Romain Clédat

17