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Demodulation and error correction
Romain Clédat

Abstract— This paper describes the techniques used in demod-
ulation and error correction. It presents where demodulation and
error correction occur in the transmission-reception chain. It will
also explain techniques used for forward error correction. A brief
note about hardware implementation of these codes will also be
made.

Index Terms— Modulation, forward error correction, demod-
ulation, Reed-Solomon, bit error rate

I. INTRODUCTION: CONTEXT OF DEMODULATION

DEMODULATION and error correction occur at the re-
ceiving part of the transmission chain. Its function is

to regenerate the original signal transmitted with the most
accuracy. To transmit information over a certain medium, the
signal is first encoded and sent over a medium, in our case, a
fiber; it then has to be decoded and, if necessary, it has to be
corrected to best reproduce the original signal.

a) Medium of transmission: We will not interest our-
selves with the medium in this paper. Many phenomena occur
during transmission of the signal over a fiber but we will not
take them into account. We will only be preoccupied with
how to get the signal back as close to the original as possible.
Therefore this paper will focus on methods that correct the
problems that may occur in a transmission line rather than on
the causes of the problems and ways to reduce or nullify these
causes.

b) Modulation: We will however briefly discuss modula-
tion. This is important to understand demodulation. Only the
basics of modulation needed to grasp what demodulation is
all about will be presented.

A. From transmitter to receiver

The complete chain from a transmitted signal to the received
signal is:
• The electrical signal to transmit will modulate the optical

emitter (a LASER, a LED, etc.). This modulation is the
subject of I-B. The information contained in the signal
will thus be transfered to the optical carriers;

• The modulated optical signal is then transmitted over a
length of fiber. Dispersion, loss and other problems can
occur in this fiber. These phenomena are not the subject
of this paper;

• The receiver must then process the signal it receives and
generate an output electrical signal identical to the origi-
nal transmitted signal. The receiver must thus demodulate
the signal and make sure it is correct (error correction).
What happens in this receiver will be discussed in more
detail throughout this paper.
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B. Brief presentation of modulation

Modulation can be defined as
Altering the characteristics of a carrier wave to
convey information. Modulation techniques include
amplitude, frequency, phase, plus many other forms
of on-off digital coding.[1]

This definition makes it clear that there are many ways to
modulate a signal.

1) Modulation for LASERs: Two different types of mod-
ulation are commonly used for transmitting over an optical
fiber:
• On-Off key modulation: With this type of modulation, the

LASER (or other light emitting device) is turned on and
off to encode zeros and ones. This is the most common
type of modulation;

• Subcarrier modulation: With this type of modulation,
another signal is modulated in the microwave range and
then controls the light emitting device. This method is
particularly useful when one wants to do multiplexing.

The most common modulation scheme, and the one we will
consider here, is on/off keying (OOK) modulation.

a) OOK modulation: With this modulation, the optical
signal is turned on or off to encode zeros and ones. It is a
binary coding with two values for the transmitted signal: either
it is on full and codes a one or it is completely off and codes
a zero.
To turn the signal on or off, you may either directly act on
the device emitting the light by turning it on or off or you can
use an external device to cut the light off from getting into
the fiber. The second method is preferred as it introduces less
chirp and the transmitted signal is less prone to dispersion.
Different signal formats are also used with this type of
modulation. The two main ones are non-return to zero (NRZ)
and return to zero (RZ). For the former scheme, the pulse
occupies the entire bit slot. In the latter scheme, the pulse
is shorter than the bit slot (there is no fixed percentage of
occupation of the bit slot and this can vary) [Fig. 1]. The
importance of signal format and other aspects of it will be
developed in II-D. See also I-B.2 for a brief presentation.

b) Other types of modulations: Since OOK modulation
is the most commonly used modulation format, we will not
describe the other schemes in detail as this is the not the goal
of this paper. Suffice to know that other schemes exist but are
not widely implemented. The OOK modulation is currently the
most widespread and most used. It works with digital signals
very nicely and is thus easy to deal with in electronics. Other
types of modulation are being experimented on today and may
become predominant in the future however.

2) Important aspects of modulation: While the principle of
modulation is simple, the implications of how modulation can
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Fig. 1. RZ format (in the top figure) and NRZ format (in the bottom figure)
for the data 1101

affect the quality of the final received signal are important to
understand. Not all modulated signals are equal. Some signals
are better and will be recovered with more accuracy than
others. This section briefly presents the main factors to look
for in modulation that are important to recovering the signal.

a) DC balance: When deciding whether a received bit
is a zero or a one, the receiver compares the power received
to a threshold power and decides if it is over the threshold (in
that case, the bit is a one) or if it is under (and in that case the
bit is a zero). The receiver cannot presume to know what the
threshold should be as it will depend on the original power
injected in the transmission line and the loss characteristics of
the transmission line. It must thus decide, with the first bits
that it receives, where this threshold should be. If the received
signal has a constant average, that is, if the ones and zeros
are statistically as likely, then it will be easy to determine
a threshold. It will simply be this constant average power.
Statistically, this power will correspond to the mean of the one
power and the zero power and will thus optimally differentiate
between zeros and ones. This is called a DC balanced signal.
Different techniques exist to obtain a DC balanced signal.
Basically, you must ensure that the signal transmitted has as
many ones as it has zeros. You can code the signal or scramble
it. These techniques will be discussed later and their impact
on demodulation and error correction will also be discussed.

b) Clock synchronization: The receiver is, as most de-
vices used with an optical system, digital, and thus works
by taking samples. It will thus take one sample per bit slot
for example and determine if the bit is a zero or a one
based on the value of this sample. Since the receiver cannot
presume to know the frequency of the transmitted signal, it
must synchronize on it and thus recover it from the signal.
You can either separately transmit the clock to the receiver (but
this introduces other problems) or you can try to recover the
clock from the transmitted signal by looking at the transitions
between zeros and ones. It is thus important to have a signal
that does not have long strings of zeros or ones because in that
case the clock may be lost. Phased lock loops help recover the
clock signal.

c) Other considerations: Other aspects are also impor-
tant to consider when modulating a signal (such as how much
spectrum does the modulated signal take, etc.) but they do
not come into play when considering demodulation. We will
thus not discuss them. The two main points above are what
is most interesting to us when considering demodulation and
error correction.

C. The importance of demodulation

As the previous section shows, data transmitted over a
channel is modulated in a specific way and undergoes other
transformations to make it more adapted to transmission.
On the receiving end, it must be possible to undo these
modifications and generate the original data; that is the goal of
demodulation. It will take the received signal from the receiver
and try to:

• Identify the zeros and ones. To do that, it will of course
have to correctly determine the bit slots and other param-
eters such as the threshold value;

• Undo the transformations the signal underwent to be
transmitted (de-scramble or decode);

• Apply an optional error correction scheme to try and
reduce the bit error rate (BER) as much as possible.

II. DEMODULATION TECHNIQUES AND DIFFICULTIES

A. Principles of demodulation

Figure 2 shows the basic principle of demodulation. Differ-
ent steps are needed to demodulate an incoming optical signal:

1) Convert the optical signal into an electrical current
with a photodetector. Demodulation is going to be done
electronically and thus we need an electrical signal as
input. This conversion is done through a photodetector;

2) Amplify the electrical signal. The optical signal received
and thus the electrical signal produced is usually very
weak as it has been through a transmission line and lost
a lot of power. The photodetector also introduced loss.
To correctly work on the signal, it needs to be amplified;

3) Filter the signal. High frequency components can be
removed for example as they usually correspond to
noise. This filter tries to reduce the various noises
produced throughout the transmission chain to have the
cleanest possible signal;

4) Recover the clock rate: The arriving signal is an analog
signal but it needs to be sampled to determine if it
represents a one or a zero. However, sampling needs
to be done at the right time and at correct intervals. The
recovery mechanism recovers the clock rate from the
signal and tries to correctly synchronize the sampler to
take samples in the middle of the bit slot for example;

5) Sample the signal. Here, samples are taken to determine
whether the measured signal represents a zero or a one;

6) Decide. The receiver then decides whether the sampled
signal is a zero or a one. The principle used is usually
that of a comparator. A threshold value is determined
and the comparator decides whether the signal value is
over or under the threshold value. The determination
of the threshold value can be tricky and comparators
usually use the first few bits to determine a threshold
value;

7) Correct errors. The last section of this paper will deal
with error correction schemes which reduce the BER
dramatically. This stage is optional but very common in
today’s links, especially long haul submarine links.
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Fig. 2. Block diagram showing the elements of the receiver. The last two elements (de-scrambling and error correction) are optional though they are usually
there, especially in long haul systems.

B. Description of a photodetector

Converting the optical signal to an electrical signal will not
be discussed in much detail. We can however briefly describe
a photodetector and characterize it in the following way:
• Responsivity: this parameter describes how the photocur-

rent coming out of the photodiode varies with the varia-
tion in intensity of the incoming optical signal;

• Dark current: this parameter describes how much current
flows out from the photodiode in the absence of light.
This can be considered as noise;

• Noise equivalent power: this parameter describes how
much optical power is needed to produce the same current
as the dark current. Variations of optical power by this
amount will thus be undetectable because they will be
like noise;

• Detectivity: this parameter describes the signal to noise
ratio. It is normalized to bandwidth and area of the
photodetector;

• Response speed: this parameter describes how fast the
photocurrent can vary. It thus limits the slope of current
change and thus limits, in a sense, the maximum bit rate;

• Spectral response: this parameter describes which wave-
lengths the detector responds to. This depends mainly on
the bandgap of the material used.

Refer to [2] for more detail on optical detectors.

C. Obtaining a “clean” signal

The electrical signal obtained from the photodetector is
usually not “clean” enough to extract viable information from.
This section describes the factors to take into account in order
to clean out the signal and obtain something that may be used
to correctly interpret and demodulate the signal.

1) Noise: This section will briefly describe the noise
present in signals and the different sources of noise. This
is not an exhaustive description of noise but is useful in
understanding the problems described in II-C.2.

a) Noise comes from different sources: Noise is not a
simple phenomenon and comes from different sources. Three
main sources of noise are [3]:
• Thermal noise: this noise comes from the random motions

of the electrons. This depends on temperature. At zero

Kelvins, there would be no thermal noise as all particles
would be still. This has never been achieved;

• Shot noise: this noise comes from the fact that the photons
do not come in a continuous fashion. They actually
arrive at the detector as quanta. Therefore the electrons
generated by the photodetector are also not generated in
a continuous fashion even if the optical intensity arriving
at the detector is constant. This is due to the quantum
nature of the photons;

• Amplifier noise: amplifiers also add noise. This is one
of the big trade-offs of an amplifier. To get more gain
and thus more easily differentiate between a zero and
a one, you need to have amplifiers. However, this not
only amplifies previous noise present in the signal but
it also adds more noise. This noise mainly comes from
spontaneous emission.

2) Amplification and filtration: As previously stated, the
signal received by the receiver is usually fairly weak and
distorted; it thus needs to be amplified and filtered. The ampli-
fication’s goal is of course to make a one easier to distinguish
from a zero. However, the problem with amplification is that it
also tends to amplify the noise added by different components
of the transmission system. The filters come in play here to try
to block out the noise present in the signal. Noise is usually at
a high frequency and can thus easily be blocked out by low-
pass filters. This of course causes problems as a rectangular
bit (representing a one for example) has an infinite spectral
content. Indeed Fourier theory states that any finite temporal
signal has an infinite frequency content and vice-versa.
Describing amplification and filtration could make a whole
paper by itself so we will not go into details about these
processes. We will rather concentrate on a clean signal. There
are still many characteristics in a clean signal that need to be
considered and that are important to demodulation.

D. Signal characteristics

In this section, we will suppose that the amplification and
filtration of the signal have achieved their goal and we have
obtained a clean signal that is interpretable. We will thus
suppose that we have a signal that looks reasonably like the
original transmitted signal. We will concentrate now on the



4 ECE 6543 FALL 2004

characteristics of the received signal and how it can influence
the recovery of the binary data.

1) DC balance: As previously stated, a signal optimally
needs to be DC balanced, that is, have as many zeros as ones
to have a constant DC (average) value. This makes it easier
to determine the power difference between a zero and a one.
Different techniques exist to achieve DC balance. Most are
based on a table lookup principle. A ‘source word’ (a specific
number of bits) of length m is mapped to a unique word of
length m+p. p corresponds to the overhead needed to achieve
the DC balance. Of course, p has to be as small as possible
in order to maximize the code’s spatial efficiency. The code
also needs to be efficient in the sense that it is easy to code
a source word and easy to decode a coded word back to its
source word.
The information presented in this section was taken mainly
from [4] and [5].

a) Some useful definitions: To understand DC balance,
we will start by defining terms useful in comprehending what
is going on.
Some useful definitions:

Source word A source word is a portion of the bi-
nary data to be transmitted (or that has
been transmitted). It is characterized
by its length. It is thus a sequence of
zeros and ones.

Codeword A codeword is an equivalent to a
‘source word’. A codeword is usually
longer than the source word it cor-
responds to. The extra length is due
to the fact that the codeword tries to
achieve a certain property (in our case,
having as many zeros as ones)

Disparity This refers to a word (source or code).
It is the difference between the number
of zeros in a word and the numbers of
ones. A one is counted as ‘+1’ and a
zero is counted as ‘-1’. A word having
exactly the same number of ones and
zeros thus has zero disparity.

Zero-disparity code Such a code transforms source words
to codewords that all have zero dispar-
ity.

Low-disparity code These codes are usually simpler than
zero-disparity codes but do not guaran-
tee zero-disparity codewords but only
ones that have a low disparity.

We will suppose the following:
• The source words will have length m where m is even. It

is easier to consider m even but the algorithms proposed
below can usually be generalized to m odd;

• The overhead incurred by the coding will be p. The final
codeword will thus be of length m

′
= m + p;

We also define the following terms:
• The source word will be represented by

x = (x1, x2, x3, ..., xm) (1)

where

xi =
{ −1, if the binary digit is 0 (2)

1, otherwise (3)

• The disparity of the first k bits of a word x will be
calculated by:

zk(x) =
k∑

i=1

xi (4)

Therefore, the disparity of a source word x is:

z(x) = zm(x) =
m∑

i=1

xi (5)

We can also easily define the number of balanced words of
length m with m even is:

M(m) =
(

m
m
2

)
(6)

This is easily understandable as it represents the number of
ways to place m

2 ones among m possible positions.
To use balanced words to transmit information with m bits
of information, we clearly need to have more balanced words
than the maximum number of possibilities coded by these m
bits. Therefore, we need to have:

M(m + p) ≥ 2m (7)

We can then use Stirling’s equivalent to extract useful informa-
tion about the minimum number of overhead bits p we will
need to use to obtain a balanced code. Stirling’s equivalent
states that:

ln (M (m + p)) = m+p− ln (m + p)
2

−
ln

(
π
2

)
2

−o

(
1

m + p

)
(8)

b) Trivial DC balance method: A very trivial and spa-
tially inefficient way to achieve DC balance is to transmit the
source word w followed immediately by its complement w.
We will thus transmit the codeword w

′
= ww. We thus have

p = m and the overhead is thus enormous. This does however
achieve DC balance over 2m = m+p bits. For m sufficiently
small compared to the bit rate (so that the balance is achieved
in a small interval of time), this will be sufficient to determine
the threshold.
This method is of course very inefficient and is not used in real
world systems. It is however a good example to understand
what DC balance is and how to obtain it.

c) A parallel coding scheme: The principle of this coding
is to split the source word in two parts. The complement of
one of these parts will be taken. The position of the split will
be calculated so that the resulting concatenation of the original
half and the other complemented half has a zero disparity.
More specifically, let w(k) be the word w with the its first k
bits complemented. Therefore, for example, if w = 01011010,
we have w(3) = 10111010.
It is clear that

z
(
w(k)

)
= −zk(w) +

m∑
i=k+1

xi = z(w)− 2zk(w) (9)
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If we want w(k) to be balanced, we must have:

z(w) = 2zk(w) (10)

We must find a k so that 10 is satisfied. We see, that:

z
(
w(0)

)
= z(w) (11)

z
(
w(m)

)
= −z(w) (12)

Given that m is even, z(w) is also even. Every-time k changes
by 1, z

(
w(k)

)
changes by 2 and thus also stays even (since

it takes an even value for k = 0). Since when k goes from 0
to m, z

(
w(k)

)
has to go from a number to its opposite, and

since z
(
w(k)

)
varies continuously over N/2N , according to

the intermediate values theorem, we can say that ∃k so that
z

(
w(k)

)
= 0. Note that this value is not necessarily unique.

We thus have a coded word that is balanced that can represent
our source word. We however also need to transmit the value
of k. We need to do this in a balanced fashion so that the total
disparity of the transmitted word is not affected.
Therefore, for example, if we want to transmit 256 bits, we
can assume, that k < 256. Therefore, we need to find 256
balanced words to code k. We must thus have 11 parity bits
because:

M(10) =
(

10
5

)
= 252 < 256

M(11) =
(

11
5

)
= 462 > 256

We can thus choose any 256 balanced words (we will name
them u0...u255 to encode the position of the cut and we will
be thus sending the coded word ukw(k). We thus have an
overhead of 11 bits (4.2%).
The decoding process is also quite simple. The value of k is
deduced by using a lookup table on the first 11 bits (in our
case) and then the original source word can be deduced from
the other 256 bits by again complementing the first k bits. It
is indeed obvious that w =

(
w(k)

)(k)
. Decoding the word is

thus not a problem.
This scheme is thus pretty effective as it has a relatively low
overhead. However, it is not the best that can be achieved.

d) Towards more complex coding: The idea is that now,
instead of balancing the source word by complementing part of
it and then coding with a balanced word the position of the cut
in the source word, we can code the position in an unbalanced
word with a disparity that will be exactly compensated by the
disparity in the coded source word.
Therefore, we will also transmit ukw(k) but this time z (uk) =
−z

(
w(k)

)
. This allows more flexibility.

We will not get into the details of this scheme although the
reader can go look at [4] for more on this scheme. With this
new scheme, we can reduce the overhead to 8 bits for 256
data bits. This is thus a significant gain but is not the point of
this article.

e) Other methods: The methods described above are not
the only ones available to achieve DC balance. They are how-
ever very efficient techniques. They do require some overhead
though. Other techniques which do not necessarily achieve

perfect DC balance consist in scrambling the signal. The signal
to transmit is mixed (for example with a XOR operation) with
another signal chosen to minimize long sequences of zeros or
ones. This incurs no overhead and reduces long sequences of
zeros or ones but does not guarantee DC balance. It is however
a good solution in some cases.

2) Other considerations: DC balance thus allows the re-
ceiver to easily determine the threshold value. It also reduces
long sequences of zeros or ones and thus allows better clock
synchronization.
Of course, it could also be interesting to discuss other aspects
of the signal such as its spectral content. For example, the
effect of line coding on the spectral content of a signal is
discussed in [5]. This however, is out of the scope of this
paper. It is nonetheless important to recognize that these
considerations exist and are sometimes crucial in designing a
line code. It is not only necessary to design an efficient code
with little overhead, it is also imperative to consider other
factors that will influence the real behavior of the line coding.
A code that adds too much spectral content for example
will not be a good code as it will take more bandwidth to
transmit and increases dispersion and other phenomena that
occur during transmission through an optical link.

E. Synchronization

The last element that we must consider when discussing a
receiver is synchronization. As previously stated, the received
signal is continuous. The receiver, however, needs to extract
bits (zeros and ones). Therefore, it needs to sample the signal.
Of course, to obtain the best possible signal, it is better to
sample the signal in the middle of the bit slots (at least
for NRZ format). The receiver thus needs to determine two
parameters to correctly sample in the middle of the bit slot:
• Where does a bit slot start;
• How long is a bit slot?

With these two parameters, the receiver will be able to
determine when to sample the signal and get the best possible
values. This is where the importance of transitions comes into
play. The only way the receiver is going to determine where
a bit slot starts is if it sees a change of value (that is between
a one and a zero). If there is no transition, there is no way,
apart from separately transmitting a synchronizing clock, that
the receiver will be able to determine what the bit length is.
A circuit called as Phased Lock Loop can recover the bit rate.
This loop makes use of a VCO (Voltage Controlled Oscillator)
and a phase comparator. The VCO will produce a signal
oscillating at a frequency proportional to the input voltage
to the VCO (well, actually, there is also a constant term). The
phase comparator will produce a voltage corresponding to the
difference in phase of two signals, in this case, the input signal
and the signal outputted from the VCO. This voltage will
control the VCO. If the input frequency is within the range of
the VCO (because the VCO only operates on a certain range),
the signal produced by the VCO will be perfectly synchronized
with the input signal. It will even follow the little variations
in frequency of the input signal.
Therefore, we can determine the frequency of the input signal
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and thus know when to take a sample. A more complete, yet
simple, explanation of a PLL can be found in [6].

F. Conclusion

This section briefly introduced the different stages that occur
during demodulation. All the stages described above must be
done before any error correction is applied. Error correction
is an optional step that can further help reduce the BER
but it must be able to work on an electrical signal of zeros
and ones. The previous steps thus convert the received signal
from optical to electrical and decode/de-scramble it. Encoding
was presented in this section. It is important to differentiate
encoding and error correction. Encoding is merely a way to
make a signal more transmission friendly. It is not in any
way a mechanism for correcting errors. It helps the receiver
interpret the signal better and in that sense you could say that
it helps diminish the BER but it is totally different from error
correction.

III. ERROR CORRECTION

Error correction, the core of the subject of this paper. This
section will start by briefly describing what error correction
is and why it is used. The Reed Solomon codes will then
be described in detail. Theses codes are commonly used
in today’s optical links. Finally, we will look at hardware
constraints for error correction chips. This is an important
aspect to look at as error correcting modules need to be present
in every receiver. If they are too complex and/or expensive,
they will not be worth it, even if they increase performance a
little bit. A compromise between cost and performance must
yet again be found. It is thus important to have a global view
of the problem.

A. What is error correction?

Error correction seems like a very straightforward term: it
is a technique to correct errors. Basically yes, it is. However,
saying that an error correction code corrects errors is not
enough to describe it and give a correct idea about such a
code. You must also ask “how effective is this code?”, or “how
much more data do I have to transmit to correct errors?”, or
“how much power does this code take?”. This section will
introduce the terms necessary to understand error correction
codes. Some historical points will also be given to show how
error correction has progressed throughout the years.

1) Birth and history of error correction: Error correction
techniques rely heavily on abstract algebra and concepts put
forth by Ernest Galois (1811-1832) among other things. Mr.
Galois was unfortunately killed at a very young age in a duel.
Very good in math but hot headed and not a good fighter. It is
most unfortunate that this promising mathematician was killed
so early.
These concepts were thus fairly old and had been around
a long time in mathematics when Claude Shannon wrote
and published “A Mathematical Theory of Communication”
in 1948 where he introduced the concept that information
could be transmitted as a sequence of symbols, each symbol

occupying a finite amount of time. He introduced the word
‘bit’ and even talked about correcting errors. Shannon is also
known for his theorem which specifies sampling limits (the
Shannon theorem). Transmitting data as symbols with a finite
temporal occupancy was extremely new at the time. Analog
signals were the only way that data was transmitted. Shannon
introduced the basis for the digital era and his work is still
studied today.
The theory of error correcting codes was researched from
that day till the 1980s. The emphasis then shifted to how
to practically make these codes work. Today, the theory of
codes is largely understood although research still continues
and better ways to implement known algorithms are being
researched. We will present the theory of error correcting
codes as well as practical aspects in implementing them.

2) Important terms and definitions: Firstly, it is very im-
portant to note that error correction can only be applied on
digital signals. In our case, we will only consider binary
signals. However, the Reed-Solomon codes presented later
in this paper do not make use of only two symbols. These
codes group together groups of bits to form new symbols.
Error correction is thus possible on a signal that used a
finite number of symbols. We could for example apply error
correction on signals that had three basic symbols like -1,
0 and 1. In binary, the two symbols used are zero and one.
Error correction is however not possible with analog signals
for example. Therefore, before any error correction scheme
can be applied, the data source must be converted to binary
format if it is not already in that form.

a) Channel encoding: Once the data is translated into a
binary word d, we are going to encode this word with our
error correction algorithm and form a codeword c of length
greater than d. The extra symbols in c will contain redundant
information. Note that a ‘symbol’ is not necessarily a zero or
a one. A symbol may be a sequence of bits for example. We
will see an example of a code that uses sequences of bits as
symbols. However, you do need to have a finite number of
symbols.

b) Modulation and demodulation: After having been
encoded, the codeword c is then used to modulate an optical
signal that is transmitted over fiber optic. This signal will then
be demodulated on the receiving end and produce a received
word r. This word probably contains errors due to transmission
noise. This is the word that will be used to decode the channel.

c) Channel decoding: r is then used as input to the
channel decoder which performs the opposite function than
the channel encoder. The decoder will try to output a word d̂
that is equal to the original information word d. It will thus
try to detect if there are any errors and correct them if it can.
If it cannot correct the errors, it will at least report that there
is an error and that the data should be sent again.

d) Types of codes: Error correcting codes are typically
classified in two categories:

Block codes These codes separate the input into
k-tuples and process each of them
sequentially and separately. A n-tuple
is produced to encode each separate
k-tuple. These codes make use of al-
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gebraic properties and are more easy
to decode;

Convolutional codes These codes use a shift register and
thus do not make use of algebraic
properties but rather decoding a con-
volutional code is probabilistic. This
makes these codes more difficult to
implement even though there perfor-
mance may be greater. See V for
more detail. These codes were also
introduced later (in 1955 by Elias)

The codes we will describe, the Reed-Solomon codes, are
block codes and are the most used in today’s optical links.

B. Description of the Reed-Solomon codes

The most commonly used codes in today’s optical links
are the Reed-Solomon codes. They are a special type of
BCH (Bose, Ray-Chaudhuri and Hocquenghem) codes which
are random-error correcting block codes. BCH codes where
introduced in 1960. These codes are very interesting because
they can correct an arbitrary number of symbol errors in an
easy to implement way. They are thus very interesting to build
cheap decoding chips. The section will introduce some of
the mathematical principles needed to understand these codes
though will not go into details. More information is available
basic undergraduate algebra classes on monoids, groups, rings,
and fields and polynomial manipulation.
Reed Solomon codes are a subset of BCH codes which are a
subset of cyclic codes which are a subset of linear block codes.
In the following sections, we will start by briefly presenting
linear block codes and then cyclic codes. This is necessary
to correctly understand BCH codes and thus Reed Solomon
codes.

IV. REED-SOLOMON CODES

A. Basic concepts of linear block codes

Linear block codes are also referred to as ‘group codes’ or
‘parity-check codes’. As its name implies, a linear block code
is a block code. A block code takes k symbols and transforms
them into n symbols. This is commonly noted (n, k). We can
define a linear block code as follows:

A block code made up entirely of 2k code words
of block length n is called a linear (n, k) code if
and only if its 2k code words form a k-dimensional
subspace of the vector space of all the n-tuples over
the binary field GF (2) [7, 35]

In other words, the code space has to be stable for addition
and stable when multiplying with an element of the field.

1) Going from a data word to a code word: The above
definition might seem abstract and difficult to understand. The
following example should dissipate any doubts. Suppose we
have a linear binary block code (n, k) and a data word of
length k. We wish to form the code word c of length n. We

can always write this in the form:

d = (d0, d1, d2, ..., dk−1) (13)
c = (c0, c1, c2, ..., cn−1) = d ·G (14)

where G =


g0,0 g0,1 ... g0,n−1

g1,0 g1,1 ... g1,n−1

. . . .

. . . .

. . . .
gk−1,0 gk−1,1 ... gk−1,n−1

(15)

We of course want to send the data in the code word so we
will suppose the following format for the code words (this is
called the systematic format):

c = (γ0, γ1, ..., γn−k−1, d0, ..., dk−1) (16)

where γj =
k−1∑
i=0

pi,jdi pi,j = 0 or 1 (17)

The γj are parity-check bits that calculate redundancy infor-
mation on the data bits. They are a linear combination of the
data bits thus the name ‘linear block code’. We thus have the
following G matrix:

G =
[
Pk×(n−k)|Ik

]
= (18)

p0,0 p0,1 ... p0,n−k−1 1 0 0 ... 0
p1,0 p1,1 ... p1,n−k−1 0 1 0 ... 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

pk−1,0 pk−1,1 ... pk−1,n−k−1 0 0 0 ... 1

 (19)

The matrix presented in 19 thus allows the conversion from a
data word to a code word (with equation 14).

2) Parity-check matrix and Hamming distance: Now that
we know how to code a data word, two very important factors
when considering a code are important to look at.

a) The parity-check matrix: This matrix is built so that
G ·HT = 0. The H matrix generates the orthogonal space to
all the code words. We can easily show that:

H =
[
In−k|PT

(n−k)×k

]
(20)

This matrix is very useful because we see that all valid
codeword must respect the condition c ·HT = 0. This makes
it very easy to check if a code word is valid or not.

b) The Hamming distance: Another important factor is
the Hamming distance between two code words. It represents
the number of positions where two code words differ. The
minimum such distance is denoted dmin. This distance is very
important because to have a code that corrects t random errors
we must imperatively have:

dmin ≥ 2t + 1 (21)

This is easily understandable. Indeed, if we take two code-
words u and v, we must make sure that a modified version of
u with t errors and a modified version of v with t errors as
well cannot be identical. If that were the case, we would be
incapable of correcting the errors because we would not know
whether to decode the received word as u or v. The minimum
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distance dmin is thus a very important parameter and it must be
as big as possible. However, this distance is bounded. Different
bounds exist for dmin. The easiest to understand is maximum
bound given in 1.

Theorem 1 (Maximum bound for dmin): For a (n, k) linear
block code, the minimum Hamming distance is upper bound
as follows: dmin ≤ n− k + 1

Proof: Let c be a codeword with a minimum weight m.
We thus have m non-zero components and since c ·H = 0, we
have ∀j ∈ [1;n− k] hj,σ(1) + hσ(2) + ... + hσ(m) where σ :
j → σ(j) gives the position σ(j) of the j non null component
of c. Therefore, we have a linear combination of columns that
is null. The m columns are thus not independent. You cannot
have more than m− 1 independent columns.
Since dmin is the minimum distance between two words, it
can be seen as the minimum sum of two codewords. Indeed,
a modulo two sum of two words will give another word in
the code (property of codes) and will only be one when both
original words are not equal. Therefore, we have m = dmin.
Given that the rank of the H matrix is at the most n − k as
it only has that many lines, we have n − k ≥ dmin − 1 and
therefore we show what we wanted.

3) Decoding a received word: When the receiver receives
a word r that is the result of the transmission of a code word
c it will receive the word r = c + e where e is the error
due to noise and other line problems. The goal is to find the
errors and correct them. To do so, one must first identify the
location of the errors. Then if the code is a binary code, it
is easy to correct the error as each symbol can take only two
values (zero or one). Therefore if a bit has an error and it is
a zero, the real value is one.

a) The syndrome: We will only consider binary codes
here. The syndrome is calculated by

s = r ·HT = e ·HT (22)

The second part of equation 22 comes from the fact that the
code word c is orthogonal to HT . The syndrome will thus
solely depend on the error bits.

b) Interpreting the syndrome: The syndrome will give
n − k linear equations in e0 through en−1. These equations
will not give a single solution (there are n−k equations but n
variables) and we will therefore choose the solution that has
the least weight (the smallest number of errors). The following
example, taken from [7, 53-54] illustrates this point.
Suppose we have the parity-check matrix for a (6, 3) linear-
block code:

H =

 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 (23)

We receive the word r = (1, 1, 0, 1, 1, 0) and we can thus
calculate s = r ·HT = (1, 0, 1).
We thus obtain the following equations:

e0 + e3 + e4 = 1 (24)
e1 + e4 + e5 = 0 (25)
e2 + e3 + e5 = 1 (26)

We thus have 8 possibilities (because we need to set arbitrarily
three bit to zero or one and then determine the other three bits
from the above equations). We will find e = (0, 0, 0, 1, 0, 0)
and thus obtain the codeword c = r + e = (1, 1, 0, 0, 1, 0).

B. Extension to cyclic codes

In the above section, we presented linear block codes.
This section briefly focuses the concepts developed above
to a particular set of codes called cyclic codes. These are
a subcategory of linear block codes and include some new
properties that make them easier to decode. These codes also
form the basis of BCH codes so it is primordial to understand
these codes to be able to understand Reed Solomon codes.

1) Added property: A cyclic code is just like a linear block
code except that it has the following extra property:

A (n, k) linear code C over GF (q) is called a cyclic
code if whenever a code word c = (c0, c1, ..., cn−1)
is in C then c(1) = (cn−1, c0, c1, ..., cn−3, cn−2) is
also in C. [7, 89]

Recursively, you can of course extend this to any shift of the
original codeword.

2) Polynomial representation and polynomial generator:
In IV-A, we described the codes as matrices. Although this is
possible to do this in this case, it is also convenient to represent
a cyclic code through the use of a generator polynomial.
We can first start by representing the codeword as:

c = c0 + c1x + c2x
2 + ... + cn−1x

n−1 (27)

We also have a generator polynomial for a (n, k) code that
satisfies the following conditions:

1) g(x) is of degree n− k;
2) g(x) divides xn − 1 in the field considered (GF (q));
3) g(x) divides at least one code word.

The last property given is generalized to the fact that all code
words must be multiples of g. Indeed it is easily shown that:

∀i ∈ N xic(x) = q(x)(xn − 1) + c(i)(x) (28)

If xn − 1 = g(x)h(x), it is obvious that if c(x) is a multiple
of g(x) so is the cyclically shifted c(i) codeword.
To produce a codeword with a data word, of length k, we
would just have to multiply the polynomial data word d(x)
with the generator polynomial g(x). This is very easy to
implement in a circuit and thus these codes are extremely
liked.

a) Systematic code form: Unfortunately, simply
multiplying d(x) by g(x) does not define a codeword in
systematic form. For example, if we have the generator
polynomial 1 + x + x3 for a (7, 4) code (we can check that
x7 − 1 = x7 + 1 = (1 + x)(1 + x + x3)(1 + x2 + x3). One
must remember that if we work modulo 2, −1 = 1), if we
have a data word d0 + d1x + d2x

2 + d3x
3, we will produce

the code word c(x) = d(x)g(x) = d0 + (d0 + d1)x + (d2 +
d1)x2 + (d0 + d2 + d3)x3 + d3x

4 + d2x
5 + d3x

6 which is not
in systematic form.
We want the code to be like c =
(γ0, γ1, ..., γn−k−1, d0, d1, ..., dk−1). If we also
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express the parity bits in the form of a polynomial
γ(x) = γ0 + γ1x + ... + γn−k−1x

n−k−1, we see that we
can always express γ(x) as the remainder in the Euclidian
division of a polynomial of degree n by one of degree n− k.
This is the fundamental property of the Euclidian division
for polynomials. If the dividend has a minimum degree of
n − k, we can then add the remainder and the dividend to
form a polynomial of degree n containing all the information
without any overlap of both original polynomials.
This is thus exactly what we do, we choose the dividend to
be xn−kd(x) and we choose the divisor to be g(x) in order
for the sum of the remainder γ(x) and the dividend to be a
codeword. We will thus have:

c(x) = γ(x) + xn−kd(x) = q(x)g(x) (29)
where xn−kd(x) = q(x)g(x) + γ(x) (30)

b) Link with the code matrix: The generator polynomial
is directly linked to the code matrix. Indeed, the code matrix
is obtained by encoding the basis vectors of the data word
space. Therefore, for example, for a (7, 4) code with 1 + x +
x3 generator polynomial, we would code the four data words
(1, 0, 0, 0); (0, 1, 0, 0); (0, 0, 1, 0); (0, 0, 0, 1) with equation 29
and obtain the four rows of G as:

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 (31)

3) Encoding and decoding: Why go through all this hassle
to form new codes? The answer lies in the fact that they
are extremely easy to implement in hardware. Encoding and
decoding can make use of the same circuit and that circuit is
very easy to build. It basically contains only adders, multipliers
and registers.

a) Encoding: Encoding basically consists in calculating
γ(x). The procedure is shown in Fig. 3(a). The circuit might
thus take some space but is simple to build and the components
are very inexpensive. A particular case is also shown in Fig.
3(b).

b) Decoding: It is easy to show that the syndrome is just
the remainder of the Euclidian division of r(x) by g(x). The
circuit used can thus be the same as the one used to calculate
γ(x). It is thus easy to decode these codes. The syndrome is
very easy to calculate and the error correction is also quite
simple. Fig. 5 shows the syndrome calculation based from
r(x). A complete decoder for g(x) = 1 + x + x3 is also
shown in Fig. 4.

C. Reed-Solomon codes

After all these preliminary explanations, we can finally get
to Reed-Solomon codes.
Reed-Solomon codes do not operate on one bit symbols by
rather on m bit symbols. Therefore, it operates on GF (2m).
A (n, t) RS code thus has:
• n = 2m − 1 symbols in a codeword;
• k = n− 2t information symbols;
• n− k = 2t check symbols.

Fig. 4. Decoder for the (7, 4) cyclic code with generator polynomial g(x) =
1 + x + x3 [7, 109]

Fig. 6. A (n, t) Reed-Solomon encoder over GF (2m). This is very like an
encoder for a cyclic code. The only difference is the multiplicative coefficients
due to the fact that we are no longer in a binary world. [7, 223]

A (n, t) RS code is also expressed as a (n, k) code. You can
usually tell from the value of the second number if it is t or
k. t is usually much smaller than k. A (n, t) RS code is also
a (n, k) cyclic code. All the properties for cyclic codes can
thus be applied to RS codes.
The following subsections will not describe in detail the ways
to encode and decode Reed-Solomon codes as a whole book
could be written just on that subject. The reader is invited
to look at the references for a more detailed analysis of this
subject. The following sections will merely describe some
particular points of the Reed-Solomon codes.

1) Generator polynomials for Reed-Solomon codes: The
generator polynomial for a (n, t) RS code over GF (2m) is
given by:

g(x) = (x + α)(x + α2)...(x + α2t) (32)

where α is a primitive element of GF (2m). This is an extra
constraint with respect to cyclic codes. This will impose
constraints on the coefficients of the code matrix G. Of course,
since Reed-Solomon codes are cyclic, encoding a word is
fairly straightforward as shown in 6.

2) Decoding Reed-Solomon codewords: What is very in-
teresting in Reed-Solomon codes is that since it works on m
bit symbols, an ‘error’ is considered symbol wise. Therefore,
a 3 error correcting Reed-Solomon code can correct from 3
bits (if all errors occur in different symbols) to as many as
3m bits in error. This is extremely useful to correct what is
known as ‘burst errors’. Burst errors can easily be understood:
if there is an external phenomenon at time ‘t’ that affects
the transmission of a portion of information, there is a great
likelihood that all the bits that many bits that are close by will
get corrupted. Burst correction is thus very important and RS
is a very effective way to do it. This section will briefly present
the basic decoding technique for Reed-Solomon codes.
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(a) General Case (b) For g(x) = 1 + x2 + x3

Fig. 3. Encoder for a (n, k) cyclic code. The squares represent registers. They thus introduce the shifting necessary to calculating the partiy bits. We can
see that the first parity bit will be ready when k information bits have been fed to the circuit. At that time, the switch will start outputting the parity bits.
This will thus correctly form the codeword. [7, 101]

(a) r(x) from the left (b) r(x) from the right

Fig. 5. Syndrome calculation from the received word r(x). The circuit used is the same as for encoding (almost). We see that r(x) can be entered into the
circuit in two different places. [7, 106]

Fig. 7. Syndrome calculation for a RS code over GF (2m) [7, 232]

a) Syndrome calculation: Again we need to calculate the
syndrome of the received word r(x) to solve for the location
of the potential errors. A diagram to calculate the syndrome
is shown in Fig. 7. Since we have a linear block code, we can
reason with the matrix H (it is easier to understand this way).
Since codewords are in the null space of H (by definition)
and since ∀i ∈ [1;n− k] c(αi) = 0 (because c is a multiple
of g) we can express H as:

H =



α0 α1 ... αn−1(
α2

)0 (
α2

)1
...

(
α2

)n−1

. . . .

. . . .

. . . .(
αn−k

)0 (
αn−k

)1
...

(
αn−k

)n−1

 (33)

Therefore, we immediately see that:

∀l ∈ [1;n− k] sl =
n∑

i=1

(
αi

)l
(34)

We can introduce a new notation to simplify this expression.
If we consider we have t errors at position ji where 1 ≤ i ≤ t
in the code, then we know that:

∀l ∈ [1;n− k] sl =
t∑

i=1

(
αji

)l
(35)

This is true since all the other coefficients of e are null. We
obviously have s(αi) = e(αi). We thus want to calculate s and
solve for the ji. This will give us the position of the errors.
To do so, we will introduce a new polynomial and use
Newton’s identities to link the coefficient of the polynomial
to its roots. We introduce the error locator polynomial:

σ(x) = σ0 + σ1x + ... + σtx
t (36)

σ(x) = (1 + αj1x)(1 + αj2x)...(1 + αjtx) (37)

Newton’s identities will yield the following result:

s1 + σ1 = 0 (38)
s2 + σ1s1 + 2σ2 = 0 (39)

... (40)
st + σ1st−1 + σ2st−2 + ... + σt−1s1 + tσt = 0 (41)

The exact calculations can be found in [7, 187-188].
Once we have found the error locator polynomial, we just need
to find the roots. The roots of this polynomial will give us the
position of the errors. The Berlekamp algorithm provides an
iterative method for finding the error locator polynomial as
well as its roots.
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b) The error value: With binary codes, locating an error
was the same as correcting an error as there were only two
possible values for each symbol. For Reed-Solomon codes,
this is no longer the case, we must thus determine the value
of each error. To do so, we introduce yet another polynomial
called the error-evaluator polynomial defined as:

Ω(x) = s(x)σ(x) (42)

This will lead to the following result:

∀i ∈ [1; t] eji =
Ω

(
α−ji

)∏t
l=1,l 6=i (1 + αjl−ji)

(43)

V. CONVOLUTIONAL CODES

It would be presumptuous to want to describe convolutional
codes in this brief paper. However it is important to point out
that they exist and are very effective codes. These codes use
as input not only the k bits considered but also the previous
outputted data. You thus cannot represent these codes simply
with algebra as before. These codes are better represented by
trees. This thus makes it complicated to decode them as you
would think at first that you need to look at the whole tree
to find the decoded sequence. However, algorithms exist that
try to decode these codes without looking at the entire tree.
These are mostly probabilistic decoding techniques that try to
associate the coded word to a decoded word with the highest
probability of success. The books given as reference all have
sections on convolutional codes.

VI. HARDWARE IMPLEMENTATION OF ERROR
CORRECTING CODES

When considering an error correcting code, it is not only
important to make sure that it is efficient mathematically, i.e.
that it will reduce the BER significantly, but it is also capital
to ensure that the code can be implemented in hardware.
Convolutional codes, for example, are more complicated to
implement than Reed-Solomon codes. Although they may be
more efficient than the Reed-Solomon codes and induce less
overhead, they are more expensive to implement and require
more power. This is a problem when you know that you must
have an error correcting chip on every receiver. Since receivers
are often in the open and in uncontrolled spaces, they have to
be robust, cheap and use little power.

A. Considerations when designing an error correcting chip

This section briefly describes what should be considered
when implementing an algorithm on chip:
• Design complexity: How complex will it be to design the

chip? When designing a chip, this is a fix cost that must
be spread out among all chips built. The higher the design
cost, the more chips will be needed to pay for the design;

• Build complexity and price: How complex is building
this chip? This will of course depend on the design and
ultimately influence the final price of the chip;

• Size of the chip: How much space does this chip take?
A receiver can need to be relatively small. For example,
in the wireless world, for cell phones, the decoding chip

needs to be fairly small as phones have become smaller
and smaller;

• Power used by the chip: How much power will the chip
need? This will also be directly linked to how much heat
it will dissipate. This is an important factor to consider as
again, some receivers have limited power available like
in cell phones. This is less true for optical networks but
the heat dissipated is an important concern. Indeed, these
chips will be close to heat sensitive equipment. If they
produce too much heat, extra circuitry to cool them and
the surrounding components will be needed;

• Frequency of operation: This is of course a very important
parameter. How fast can the chip operate? It will need to
operate at the line rate or a little slower since the signal
scrambling or encoding might induce some overhead that
will not be seen by the error correcting chip. This rate
will however be faster than the user rate as the error
correcting code will have introduced some overhead;

• Scalability and possibility to evolve: This is an important
factor to consider. What will happen if you decide to
go from 10 Gbps to 40 Gbps. Will you have to change
everything? Also what happens if you now want to correct
more errors? Will the chip be able to be reprogrammed
or will you have to get a new one?

All the above considerations lead to the ultimate consideration
in systems: cost versus gain. Error correction allows you to
lower your BER. This is good as it allows you to go further
and still maintain an acceptable BER. But at what cost? You
will have to drive your system faster to maintain a certain line
rate (because of the overhead incurred by error correction) and
you will need additional circuitry to support error correction.

B. Example encoder for RS (15, 11)
Fig. 8 shows the schematics for an encoder. The decoder

will also make use only of simple elements like registers and
logical gates. Convolutional codes make use of multiplexers
and more complicated circuitry and are thus more expensive
to implement.
The decoder for the RS code will however be more compli-
cated than the decoder.

VII. CONCLUSION

Transmission over an optical system, or any other media
for that matter, introduces noise, distortion and other artifacts
that make recognizing the original transmitted signal difficult.
There are different approaches to try to make up for these
natural problems. One of them is trying to correct the problems
individually and either anticipating them and correcting in
advance (for example, you can transmit the signal distorted
and hope that the actual line distortion will restore the original
signal) or correcting them near the end of the line (for example
with dispersion compensating fiber). The other approach, and
the one taken by FEC, is to treat all problems as one and say
that they introduce errors in the transmission. The goal is then
not to try to correct each problem but to recover the correct
signal from the erroneous signal.
Of course, to produce the best results, both these approaches
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Fig. 8. Double error correcting RS (15, 11) encoder [7, 225]

need to be pursued concurrently. This is what is done in
today’s modern optical systems. This is a great example
of where physics and electronics come together to produce
a better result. Physical phenomena can be corrected but
electronics can also help with error correction.
It is however important to keep in mind also the physical
constraints of a network. Price, space, power are all factors
which must be taken into account when implementing an
error correction system. Having a theoretical model and an
ultra efficient algorithm is not worth anything if it cannot be
implemented reasonably.
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