

Energy Efficiency via the N-way Model

Romain Cledat and Santosh Pande

- Moore's law is still in force:
 - More **cores** instead speed

- Moore's law is still in force:
 - More **cores** instead speed
- Higher power consumption but also finer control

- Moore's law is still in force:
 - More **cores** instead speed
- Higher power consumption but also finer control
- Amdahl's law still restricts the performance of programs

- Moore's law is still in force:
 - More cores instead speed
- Higher power consumption but also finer control
- Amdahl's law still restricts the performance of programs

Parallel codes efficiently utilize parallel resources

- Parallel codes efficiently utilize parallel resources
- For sequential codes:
 - Can parallel resources be utilized?
 - ILP uses in-core parallelism
 - Other cores can be used to speculate, prefetch, etc.
 - Can they be used efficiently in terms of energy?

- Parallel codes efficiently utilize parallel resources
- For sequential codes:
 - Can parallel resources be utilized?
 - ILP uses in-core parallelism
 - Other cores can be used to speculate, prefetch, etc.
 - Can they be used efficiently in terms of energy?
- In this work, we present a use of parallel cores to improve the algorithmic energy efficiency of sequential algorithms

 An algorithm specifies a particular way to solve a problem

- An algorithm specifies a particular way to solve a problem
- It runs on a particular platform

- An algorithm specifies a particular way to solve a problem
- It runs on a particular platform
- Its input data is dynamically provided at runtime

- An algorithm specifies a particular way to solve a problem
- It runs on a particular platform
- Its input data is dynamically provided at runtime

• For a given problem and input, what is the best match?

- An algorithm specifies a particular way to solve a problem
- It runs on a particular platform
- Its input data is dynamically provided at runtime

- For a given problem and input, what is the best match?
- For a given input, a particular algorithm may be better.

Outline

- The challenges of sequential code on multi-cores
- Using diversity to expose parallelism
- Measures of energy efficiency
 - Progress measure
 - Power measure
- The n-way programming model
- Preliminary results and future work

- Heterogeneity used to be present across machines
 - ASICs and FPGAs were optimized for certain algorithms

- Heterogeneity used to be present across machines
 - ASICs and FPGAs were optimized for certain algorithms
- Today, chips are becoming heterogeneous
 - Asymmetric multi-cores to save space and power
 - Specialized accelerators (GPUs, network processors...)

- Heterogeneity used to be present across machines
 - ASICs and FPGAs were optimized for certain algorithms
- Today, chips are becoming heterogeneous
 - Asymmetric multi-cores to save space and power
 - Specialized accelerators (GPUs, network processors...)
- The efficiency of each chip is different and depends on the algorithm
 - GPUs adapted for massive data parallelism
 - Cell SPUs excel at SIMD code

- Sequential algorithms currently do not exploit it
 - Parallelism limited to ILP
 - Extra cores can help in speculation, prefetching, ...

- Sequential algorithms currently do not exploit it
 - Parallelism limited to ILP
 - Extra cores can help in speculation, prefetching, ...
- Cores can differ:
 - branch logic, prefetching logic, amount of speculation, cache sizes, ...
 - leads to different energy requirements depending on use

- Sequential algorithms currently do not exploit it
 - Parallelism limited to ILP
 - Extra cores can help in speculation, prefetching, ...
- Cores can differ:
 - branch logic, prefetching logic, amount of speculation, cache sizes, ...
 - leads to different energy requirements depending on use
- Tools to match code to cores are rare (GLIMPSES for SPUs: http://sourceforge.net/projects/glimpses/)

• For a given problem, many "ways" to solve it

- For a given problem, many "ways" to solve it
- Diversity present:
 - Across algorithms
 - In tuning parameters for algorithms (CPLEX for example)
 - Within an algorithm (randomization for example)

- For a given problem, many "ways" to solve it
- Diversity present:
 - Across algorithms
 - In tuning parameters for algorithms (CPLEX for example)
 - Within an algorithm (randomization for example)

 The choice for the "best" algorithm is not always clear statically or even when the input is known

 For hard problems (NP-hard or even very large problems), exact solutions are impractical

- For hard problems (NP-hard or even very large problems), exact solutions are impractical
- Acceptable solutions rather than exact ones are sought

- For hard problems (NP-hard or even very large problems), exact solutions are impractical
- Acceptable solutions rather than exact ones are sought
- Variety of techniques used:
 - Approximation algorithms
 - Heuristics

- For hard problems (NP-hard or even very large problems), exact solutions are impractical
- Acceptable solutions rather than exact ones are sought
- Variety of techniques used:
 - Approximation algorithms
 - Heuristics

Solutions across algorithms may be different but all are correct

- For hard problems (NP-hard or even very large problems), exact solutions are impractical
- Acceptable solutions rather than exact ones are sought
- Variety of techniques used:
 - Approximation algorithms
 - Heuristics
- Solutions across algorithms may be different but all are correct
- Examples: SAT solvers, path finding algorithms, ...

Diversity within an algorithm

Diversity within an algorithm

- Certain algorithms are also intrinsically diverse:
 - Distinct executions will lead to distinct execution paths and possibly distinct solutions

Diversity within an algorithm

- Certain algorithms are also intrinsically diverse:
 - Distinct executions will lead to distinct execution paths and possibly distinct solutions
- Intuition: randomized algorithms
 - Utilized for their simplicity and quicker execution
 - Random choices lead to different executions each time

- Differences in:
 - Memory accesses
 - Total compute steps

- Differences in:
 - Memory accesses
 - Total compute steps
- Energy needs will be different

Georgia

- Differences in:
 - Memory accesses
 - Total compute steps
- Energy needs will be different
- Highly unpredictable

Georgia

• Diversity creates the exploration space

- Diversity creates the exploration space
- We want to utilize multi-cores to dynamically determine the best platform/algorithm match for a given input

- Diversity creates the exploration space
- We want to utilize multi-cores to dynamically determine the best platform/algorithm match for a given input
- Multi-cores allow this exploration to be done without any assumptions
 - Just-in-time decision

Outline

- The challenges of sequential code on multi-cores
- Using diversity to expose parallelism
- Measures of energy efficiency
 - Progress measure
 - Power measure
- The n-way programming model
- Preliminary results and future work

Efficient: achieving maximum productivity with minimum wasted effort

- Efficient: achieving maximum productivity with minimum wasted effort
- For an algorithm:
 - The "product" is the solution to the problem
 - The "effort" is the energy/resources used

- Efficient: achieving maximum productivity with minimum wasted effort
- For an algorithm:
 - The "product" is the solution to the problem
 - The "effort" is the energy/resources used
- An algorithm is therefore energy efficient if it makes the most progress per unit of energy used

Progress measure

- Progress is the amount of work done towards finding the solution to the problem:
 - Defined in terms of the problem, not the algorithm
 - Very problem dependent

- Progress is the amount of work done towards finding the solution to the problem:
 - Defined in terms of the problem, not the algorithm
 - Very problem dependent
- Progress needs to be:
 - Monotonic: cannot undo progress
 - Comparable

- In a "sort" problem
 - Number of elements correctly placed

- In a "sort" problem
 - Number of elements correctly placed
- Greedy constructive algorithms:
 - Natural notion of progress

- In a "sort" problem
 - Number of elements correctly placed
- Greedy constructive algorithms:
 - Natural notion of progress
- Search-based problems (SAT problems):
 - The amount of space explored

- In a "sort" problem
 - Number of elements correctly placed
- Greedy constructive algorithms:
 - Natural notion of progress
- Search-based problems (SAT problems):
 - The amount of space explored
- Not always evident but widely applicable

• Energy is hard to measure in real-time

- Energy is hard to measure in real-time
- Approximate models are required

- Energy is hard to measure in real-time
- Approximate models are required
- Performance monitoring counters (PMCs) can be used:
 - Run micro-benchmarks exercising PMCs
 - Measure power consumption with a Watt meter
 - Correlate PMCs and consumption and build a model

- Energy is hard to measure in real-time
- Approximate models are required
- Performance monitoring counters (PMCs) can be used:
 - Run micro-benchmarks exercising PMCs
 - Measure power consumption with a Watt meter
 - Correlate PMCs and consumption and build a model
- Estimating power in real-time is thus possible

Outline

- The challenges of sequential code on multi-cores
- Using diversity to expose parallelism
- Measures of energy efficiency
 - Progress measure
 - Power measure
- The n-way programming model
- Preliminary results and future work

Diversity and the n-way model

Diversity and the n-way model

- The n-way model exploits diversity:
 - To speedup or improve the QoR [HotPar 2009]
 - To find the best match just-in-time [PESPMA 2010]

- The n-way model exploits diversity:
 - To speedup or improve the QoR [HotPar 2009]
 - To find the best match just-in-time [PESPMA 2010]

Georgia College of Tech Computing

- The n-way model exploits diversity:
 - To speedup or improve the QoR [HotPar 2009]
 - To find the best match just-in-time [PESPMA 2010]

Georgia College of Tech Computin

Isolation

Provides semantic equivalence with the sequential execution

Isolation

Provides semantic equivalence with the sequential execution

Progress monitor

Each way reports back its progress

Isolation

Provides semantic equivalence with the sequential execution

• Progress monitor

Each way reports back its progress

• Dynamic choice and culling

- The most energy efficient way is automatically selected
- It must be late enough to have gathered enough information
- But also early enough to save energy

Available API

Available API

- Identify a "problem" and attach "ways"
 - All ways solve the same problem

Available API

- Identify a "problem" and attach "ways"
 - All ways solve the same problem
- Identify a "progress" structure to report back progess

Identify a "problem" and attach "ways"

All ways solve the same problem

Identify a "progress" structure to report back progess

```
/* Each way has its own "runWay" function */
void runWay(NVWayMetrics& progressMetric, ...) {
    <code for the way>
    <updates progressMetric along the way>
}
```

```
/*The main code */
NVGoal myGoal;
myGoal.attach(NVWay(runWay));
<attach more ways>
```

myGoal.run();

Georgia College of Tech Computin

Outline

- The challenges of sequential code on multi-cores
- Using diversity to expose parallelism
- Measures of energy efficiency
 - Progress measure
 - Power measure
- The n-way programming model
- Preliminary results and future work

- Evaluated idea with different implementations of the "sort" benchmark
 - Chosen for illustration purposes
 - Progress is the "number of moves"

- Evaluated idea with different implementations of the "sort" benchmark
 - Chosen for illustration purposes
 - Progress is the "number of moves"
- Energy model based on K. Singh's model [ICS 2009]

- Evaluated idea with different implementations of the "sort" benchmark
 - Chosen for illustration purposes
 - Progress is the "number of moves"
- Energy model based on K. Singh's model [ICS 2009]
- Used an Intel Core 2 Duo Q6700 with 2 GB of RAM
 - Patched 2.6.26 Linux kernel for PMC monitoring with PAPI

Georgia

Pick with good effectiveness possible

25

Georgia

"Profiling" becomes required because useful work is not equally distributed

Challenges

Challenges

- Non-uniform energy efficiency
 - Different algorithms have different usage profile
 - Possible to pre-profile applications and apply corrective factor

Challenges

- Non-uniform energy efficiency
 - Different algorithms have different usage profile
 - Possible to pre-profile applications and apply corrective factor
- Accurate monitoring
 - Energy needs to be accurately modeled
 - Challenges with shared resources

- Introduced the notion of algorithmic energy efficiency
 - Should be managed vertically (problem, algorithm, implementation, architecture) for each input
 - Combines algorithmic progress and energy

- Introduced the notion of algorithmic energy efficiency
 - Should be managed vertically (problem, algorithm, implementation, architecture) for each input
 - Combines algorithmic progress and energy
- N-way provides a model to utilize multi-cores and exploit diversity to pick the most energy efficient match

- Introduced the notion of algorithmic energy efficiency
 - Should be managed vertically (problem, algorithm, implementation, architecture) for each input
 - Combines algorithmic progress and energy
- N-way provides a model to utilize multi-cores and exploit diversity to pick the most energy efficient match
- Progress metric is important to define (monotonic, etc)

- Introduced the notion of algorithmic energy efficiency
 - Should be managed vertically (problem, algorithm, implementation, architecture) for each input
 - Combines algorithmic progress and energy
- N-way provides a model to utilize multi-cores and exploit diversity to pick the most energy efficient match
- Progress metric is important to define (monotonic, etc)
- Burst of energy use allows longer period when unused resources can be turned off

- Introduced the notion of algorithmic energy efficiency
 - Should be managed vertically (problem, algorithm, implementation, architecture) for each input
 - Combines algorithmic progress and energy
- N-way provides a model to utilize multi-cores and exploit diversity to pick the most energy efficient match
- Progress metric is important to define (monotonic, etc)
- Burst of energy use allows longer period when unused resources can be turned off
- Currently works with algorithms with similar "phases"
 - Looking for input on this and "power-models" for machine and algorithms

Thank you!

Reference: Opportunistic Computing: a new paradigm for scalable realism on many cores R. Cledat, T. Kumar, J. Sreeram, S. Pande [HotPar 2009]