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Cores galore 

  When single-core was the norm 
 Applications would naturally improve (with frequency) 

  With multi-cores 
  Task/data parallelism is used but not always scalable 

  With many-cores 
 Well-structured applications can scale 
 What of the others? 
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Cores will be wasted 
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Speedup Is Not Always the End-Goal 
  Immersive Applications intend to provide the richest, most engrossing 

experience possible to the interactive user 
  Gaming, Multimedia, Interactive Visualization 

  With growing number of cores, or increasing clock-frequencies 
  These applications want to do MORE, not just do it FASTER 

  Design goal: maximize Realism 
  Sophistication in Modeling: Most detail in render/animation 
  Responsiveness: Frequent updates, respond “instantly” to user inputs 

Must continually 
update world 
& respond to 

Interactive User 
(30 frames-per-sec) 
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How do we Maximize Realism? 
Using multi-cores to maximize realism 

#1: N-version Parallelism 
Speed up hard-to-parallelize 
algorithms with high probability 
-  Applies to algorithms that have a 
diversity of ways to execute 
-  Basic Intuition: Randomized Algorithms 
    (but not limited to them) 

#2: Scalable Soft Real-Time 
Semantics (SRT) 
Scale application semantics to 
available compute resources 
-  Applies to algorithms whose execution  
   time, multi-core resource requirements  
   and sophistication are parametric 
-  Basic Intuition: Real-Time Systems 
  (but with different formal techniques) 

Two 
complementary 

techniques 

Unified as Opportunistic Computing Paradigm: 
N-version creates slack for SRT to utilize for Realism 



#1  
N-Version Parallelism: 
Speedup Sequential Algorithms with 
High Probability 
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Bottleneck for Speedup 

  Applications still have significant 
sequential parts 
  Stagnation in processor clock frequencies 

makes sequential parts the major 
bottleneck to speedup (Amdahl’s Law) 

  A reduction in expected execution time for 
sequential parts of an application will 
provide more slack to improve realism 
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Intuition 
  Algorithms making random choices for a fixed input lead to 

varying completion times 
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Fastest among 
n is faster than 
average with 

high probability 

  Big opportunities for expected speedup 
with increasing n 

  Tradeoff             

  Wider spread  more speedup  

Uniform 

Completion time 

Bimodal 

Completion time 

E1 E1 E2 
E3 

E4 

E2 E3 
E4 
Run n instances in parallel under isolation 
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n (# of cores) 
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Speedup 



Efficient parallelism 

Learning Culling 

  Repeatedly invoked kernels 
  Learns the PDF 
  Assumes stability condition 

PDF[A(Ij)]≈ PDF[A(Ij-1)…A(Ij-M)] 

  Determine expected speedup 
and optimal efficiency 
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  Launch as many as possible 
  Provide monitoring capabilities 
  Periodically cull non-

performing ways 

  Does not directly calculate the 
efficiency but indirectly 
influences it 
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N-version parallelism in C/C++ 
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int a[]; 
void f(Input) { 

 int b = …; 
 a[k] = …; 

} 

Local state: leave as is 
Non-local state: wrap with API call 

C++ can eliminate API wrappers 

Render each instance side-effect free 

Start n-versions 

n-versions completion time 

Commits	  non-‐
local	  state	  

f(I)	  

R1	  

f(I)	  

R2	  

f(I)	  

R3	  

f(I)	  

R4	  

Shared<int> a[]; 



Results: low overhead runtime provides    
good speedup 
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WalkSAT benchmark 

Hamiltonian benchmark 
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Status and current research 

  C++ framework implemented and tested 

  How broad is the class of algorithms that would benefit? 

  Exploration of the balance between n-version and traditional 
parallelism 
  Efficiency becomes a crucial measure 
  N-version can complement already parallel applications due to lower memory 

footprint 

  Exploration of other performance metrics 
  Pick-the-best instead of pick-the-fastest (quality of result) 
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#2 
Scalable Soft Real-Time Semantics (SRT): 
Scale Application Semantics to 
Available Compute Resources 
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Applications with Scalable Semantics 
  Games, Multimedia Codecs, Interactive Visualization 

  Possess scalable semantics 

AI Physics 
Game 

Frame Time 

1/30 sec 

Frame# 0 - 10 

Frame# 50 - 60 
slack 

compromises Realism 
by not maximizing 

Sophistication 

Scale down AI complexity: 
   think-frequency, vision-range 

Scale up AI & Physics complexity: 
   sim time-step, effects modeled 

Frame# 80 - 90 

Characteristic 1 
User-Responsiveness is Crucial. 
 Model/Algorithmic Complexity 
must be suitably adjusted / bounded 

Game-Frames 
at approx. 30 fps 

Characteristic 2 
Dynamic Variations 
in Execution Time over Data Set. 
 To preserve Responsiveness 
while maximizing Sophistication, 
Continually Monitor Time and Scale 
Algorithmic Complexity (semantics) 

Missed deadline significantly 
Responsiveness Affected 

Scale down Physics complexity 
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Scaling Semantics in Monolithic Applications 
  Challenge for Monolithic Applications 

  C/C++/Java do not express user-responsiveness objectives and scalable semantics 

  Our Approach 
  Let Programmers specify responsiveness policy and scaling hooks using SRT API 
  Let SRT Runtime determine how to achieve policy by manipulating provided hooks 

  SRT API enables programmers to specify policy and hooks 
  Based purely on their knowledge of the functional design of individual algorithms and 

application components 
  Without requiring them to anticipate the emergent responsiveness behavior of interacting 

components 

  SRT Runtime is based on Machine Learning and System Identification (Control 
Theory), enabling Runtime to 
  Infer the structure of the application 
  Learn cause-effect relationships across application structure 
  Statistically predicts how manipulating hooks will scale semantics in a manner that best achieves 

desired responsiveness policy 
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Case Study: Incorporating SRT API 
& Runtime in a Gaming Application 

Typical Game Engine 

run_frame() 

AI Physics Rendering 

frame frame frame 

frame “Game” 

responsiveness objective: 
Achieve 25 to 40 fps, 
with probability > 90% 

model 

user 
code 
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resp. objective: 
Consume 

< 40% of “Game” 

choices affect 
frame-times & objectives 

SRT Runtime 
-  Monitors frame 
-  Learns Application-wide 
Average Frame Structure 
-  Chooses between 
user-codes in model 

-  Learns & Caches statistical relations: 

-  Reinforcement Learning: Which models predominantly 
affect which objectives? (infer complex relationships, slowly) 

-  Feedback Control: Adjust choices in models (simple, 
medium, complex, …) to meet objectives (fast reaction) 
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Torque Game Engine: Measured Behavior 

objective: 
25 to 42 fps 

SRT avoids 
unacceptably low  
FPS, by reducing AI 

SRT avoids 
unnecessarily high  
FPS, by increasing AI 
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Conclusion 

  Maximizing Realism is underlying design goal for an important class of 
applications 
  Speedup is only one enabling factor 

  Realism provides avenues to utilize multi/many-cores, over and above 
traditional task and data parallelism techniques 

  We introduced two complementary techniques that utilize extra cores for 
maximizing Realism 
  N-versions Parallelism: Creates slack on hard to parallelize code 
  Semantics Scaling SRT: Utilizes dynamically available slack to maximize 

realism 
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Thank you! 

 Questions? 

Reference: R. Cledat, T. Kumar, J. Sreeram, S. Pande: 
Opportunistic Computing: A New Paradigm for Scalable Realism, 
HotPar 2009 
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What is Realism? 

  Realism consists of 
  Sophistication in Modeling 

  Example: Render/Animate as highly detailed a simulated world as possible 

  Responsiveness 
  Example: Update world frequently, respond “instantly” to user inputs 
  Unit of world update: Frame 

  Typical Programming Goal 
  Pick models/algorithms of as high a sophistication as possible that can execute within a 

frame deadline of 1/30 seconds 

  Flexibility: Probabilistic Achievement of Realism is Sufficient 
  Most frames (say, >90%) must complete within 10% of frame deadline 
  Relatively few frames (<10%) may complete very early or very late 
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Scaling Semantics with Multi-cores 

  Traditionally, benefiting from more cores required breaking up the 
same computation into more parallel parts 
 Difficult problem for many applications, including gaming and multimedia 

  Scalable Semantics provide an additional mechanism to utilize more 
cores 

Asophisticated 

Data D 

Amedium 

Data D 

Asimple 

Data D Scaling Algorithms 
with Resources 

Algo A Algo A Algo A 

D1: Simple 
Game Objects Scaling Data Sets 

with Resources 

D2 
D3: Fine-grain 
Polytope Objects 

Scripted Game-World Interactions, 
Unbreakable Objects 

Open-Ended Game-World Interactions, 
Dynamic Fracture Mechanics 
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Application Use Scenario 

  Need knowledge of PDF[A(Ij)] to compute the speedup S 

 Determine PDF[A(Ij-1)…A(Ij-M)] 
 Assume PDF[A(Ij)]≈ PDF[A(Ij-1)…A(Ij-M)] (stability condition) 

  Stability condition gives predictive power 
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Program 

Input 

A 

Ij-1 … Ij-M 
  Goal: Find the reasonable 

n to reduce expected 

completion time of PDF[A
(Ij)]  Completion time 
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ro

ba
bi

lit
y 

E1 (mean) E2 

When will this hold? 

We want to determine the speedup S and the number of concurrent instances n on 

A(Ij) from PDF with no prior knowledge of the underlying distribution 

How do we do this? 
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PDF and Stability Condition 

  Randomized algorithms 
  Analytically known PDF 

  Depends on input size and parameters 
(referred to as “size”) 

  “Size” might be unknown 

  Other algorithms 
  PDF is analytically unknown/

intractable  
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Run:me	  
Es:ma:on	  

  Holds statically over j for inputs 
of the same “size” 

  Graph algos:       and   

  Holds for sufficiently slow 
variations 

  |Ij-M|≈ …≈|Ij-1|≈|Ij|  
  Example: TSP for trucks in 

continental United States 
  Fixed grid size 
  Similar paths 

PDF[A(Ij)]   ≈   PDF[A(Ij-1)…A(Ij-M)] 
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Don’t Real-Time Methods Solve This Already? 

Games, Multimedia, 
Interactive Viz 

Implement as 
a Real-Time App 

T0 

T2 T3 T1 

T5 T4 

T6 T7 
Real-Time Task-Graph 
-  Application decomposed  
   into Tasks and  
   Precedence Constraints 

-  Responsiveness  
  guaranteed by Real-time  
  semantics (hard or  
  probabilistic) 

Implement with 
High-Productivity, 
Large Scale 
Programming flows 

C, C++, Java: Monolithic App 
-  100Ks to Millions of LoC 

-  No analyzable structure for 
   responsiveness and scaling 

-  Responsiveness is entirely an 
   emergent attribute 
(currently tuning this is an art) Need a new bag of tricks to Scale 

Semantics in Monolithic Applications 


