
Romain Cledat and Tushar Kumar,
Advised by Santosh Pande

Opportunistic Computing: A New Paradigm
for Scalable Realism on Many-Cores

Cores galore

  When single-core was the norm
 Applications would naturally improve (with frequency)

  With multi-cores
  Task/data parallelism is used but not always scalable

  With many-cores
 Well-structured applications can scale
 What of the others?

2

Cores will be wasted

3

Speedup Is Not Always the End-Goal
  Immersive Applications intend to provide the richest, most engrossing

experience possible to the interactive user
  Gaming, Multimedia, Interactive Visualization

  With growing number of cores, or increasing clock-frequencies
  These applications want to do MORE, not just do it FASTER

  Design goal: maximize Realism
  Sophistication in Modeling: Most detail in render/animation
  Responsiveness: Frequent updates, respond “instantly” to user inputs

Must continually
update world
& respond to

Interactive User
(30 frames-per-sec)

Pe
r-

Fr
am

e
Ti

m
e

Fa
st

er

Co
m

pu
ta

tio
n

More, Faster Cores Fewer Cores

Idling CPUs,
No Benefit!

M
or

e
Co

m
pu

ta
tio

n

Enhanced
Realism

4

How do we Maximize Realism?
Using multi-cores to maximize realism

#1: N-version Parallelism
Speed up hard-to-parallelize
algorithms with high probability
-  Applies to algorithms that have a
diversity of ways to execute
-  Basic Intuition: Randomized Algorithms
 (but not limited to them)

#2: Scalable Soft Real-Time
Semantics (SRT)
Scale application semantics to
available compute resources
-  Applies to algorithms whose execution
 time, multi-core resource requirements
 and sophistication are parametric
-  Basic Intuition: Real-Time Systems
 (but with different formal techniques)

Two
complementary

techniques

Unified as Opportunistic Computing Paradigm:
N-version creates slack for SRT to utilize for Realism

#1
N-Version Parallelism:
Speedup Sequential Algorithms with
High Probability

6

Bottleneck for Speedup

  Applications still have significant
sequential parts
  Stagnation in processor clock frequencies

makes sequential parts the major
bottleneck to speedup (Amdahl’s Law)

  A reduction in expected execution time for
sequential parts of an application will
provide more slack to improve realism

6	

S
eq

ue
nt

ia
l

P
ar

al
le

l
S

pe
ed

up

Speedup
Bottleneck

7

Intuition
  Algorithms making random choices for a fixed input lead to

varying completion times

7	

Fastest among
n is faster than
average with

high probability

  Big opportunities for expected speedup
with increasing n

  Tradeoff

  Wider spread more speedup

Uniform

Completion time

Bimodal

Completion time

E1 E1 E2
E3

E4

E2 E3
E4
Run n instances in parallel under isolation

2

2

n (# of cores)
1 2 3

2
3
4
5

1

4

Speedup

Efficient parallelism

Learning Culling

  Repeatedly invoked kernels
  Learns the PDF
  Assumes stability condition

PDF[A(Ij)]≈ PDF[A(Ij-1)…A(Ij-M)]

  Determine expected speedup
and optimal efficiency

8

€

e =
Sn
n

  Launch as many as possible
  Provide monitoring capabilities
  Periodically cull non-

performing ways

  Does not directly calculate the
efficiency but indirectly
influences it

9

N-version parallelism in C/C++

9	

int a[];
void f(Input) {

 int b = …;
 a[k] = …;

}

Local state: leave as is
Non-local state: wrap with API call

C++ can eliminate API wrappers

Render each instance side-effect free

Start n-versions

n-versions completion time

Commits	 non-‐
local	 state	

f(I)	

R1	

f(I)	

R2	

f(I)	

R3	

f(I)	

R4	

Shared<int> a[];

Results: low overhead runtime provides
good speedup

10

WalkSAT benchmark

Hamiltonian benchmark

11

Status and current research

  C++ framework implemented and tested

  How broad is the class of algorithms that would benefit?

  Exploration of the balance between n-version and traditional
parallelism
  Efficiency becomes a crucial measure
  N-version can complement already parallel applications due to lower memory

footprint

  Exploration of other performance metrics
  Pick-the-best instead of pick-the-fastest (quality of result)

11	

#2
Scalable Soft Real-Time Semantics (SRT):
Scale Application Semantics to
Available Compute Resources

13

Applications with Scalable Semantics
  Games, Multimedia Codecs, Interactive Visualization

  Possess scalable semantics

AI Physics
Game

Frame Time

1/30 sec

Frame# 0 - 10

Frame# 50 - 60
slack

compromises Realism
by not maximizing

Sophistication

Scale down AI complexity:
 think-frequency, vision-range

Scale up AI & Physics complexity:
 sim time-step, effects modeled

Frame# 80 - 90

Characteristic 1
User-Responsiveness is Crucial.
 Model/Algorithmic Complexity
must be suitably adjusted / bounded

Game-Frames
at approx. 30 fps

Characteristic 2
Dynamic Variations
in Execution Time over Data Set.
 To preserve Responsiveness
while maximizing Sophistication,
Continually Monitor Time and Scale
Algorithmic Complexity (semantics)

Missed deadline significantly
Responsiveness Affected

Scale down Physics complexity

14

Scaling Semantics in Monolithic Applications
  Challenge for Monolithic Applications

  C/C++/Java do not express user-responsiveness objectives and scalable semantics

  Our Approach
  Let Programmers specify responsiveness policy and scaling hooks using SRT API
  Let SRT Runtime determine how to achieve policy by manipulating provided hooks

  SRT API enables programmers to specify policy and hooks
  Based purely on their knowledge of the functional design of individual algorithms and

application components
  Without requiring them to anticipate the emergent responsiveness behavior of interacting

components

  SRT Runtime is based on Machine Learning and System Identification (Control
Theory), enabling Runtime to
  Infer the structure of the application
  Learn cause-effect relationships across application structure
  Statistically predicts how manipulating hooks will scale semantics in a manner that best achieves

desired responsiveness policy

15

Case Study: Incorporating SRT API
& Runtime in a Gaming Application

Typical Game Engine

run_frame()

AI Physics Rendering

frame frame frame

frame “Game”

responsiveness objective:
Achieve 25 to 40 fps,
with probability > 90%

model

user
code

model
si

m
pl

e

co
m

pl
ex

,
pa

ra
lle

l

resp. objective:
Consume

< 40% of “Game”

choices affect
frame-times & objectives

SRT Runtime
-  Monitors frame
-  Learns Application-wide
Average Frame Structure
-  Chooses between
user-codes in model

-  Learns & Caches statistical relations:

-  Reinforcement Learning: Which models predominantly
affect which objectives? (infer complex relationships, slowly)

-  Feedback Control: Adjust choices in models (simple,
medium, complex, …) to meet objectives (fast reaction)

16

Torque Game Engine: Measured Behavior

objective:
25 to 42 fps

SRT avoids
unacceptably low
FPS, by reducing AI

SRT avoids
unnecessarily high
FPS, by increasing AI

17

Conclusion

  Maximizing Realism is underlying design goal for an important class of
applications
  Speedup is only one enabling factor

  Realism provides avenues to utilize multi/many-cores, over and above
traditional task and data parallelism techniques

  We introduced two complementary techniques that utilize extra cores for
maximizing Realism
  N-versions Parallelism: Creates slack on hard to parallelize code
  Semantics Scaling SRT: Utilizes dynamically available slack to maximize

realism

18

Thank you!

 Questions?

Reference: R. Cledat, T. Kumar, J. Sreeram, S. Pande:
Opportunistic Computing: A New Paradigm for Scalable Realism,
HotPar 2009

Backup Slides

19

20

What is Realism?

  Realism consists of
  Sophistication in Modeling

  Example: Render/Animate as highly detailed a simulated world as possible

  Responsiveness
  Example: Update world frequently, respond “instantly” to user inputs
  Unit of world update: Frame

  Typical Programming Goal
  Pick models/algorithms of as high a sophistication as possible that can execute within a

frame deadline of 1/30 seconds

  Flexibility: Probabilistic Achievement of Realism is Sufficient
  Most frames (say, >90%) must complete within 10% of frame deadline
  Relatively few frames (<10%) may complete very early or very late

21

Scaling Semantics with Multi-cores

  Traditionally, benefiting from more cores required breaking up the
same computation into more parallel parts
 Difficult problem for many applications, including gaming and multimedia

  Scalable Semantics provide an additional mechanism to utilize more
cores

Asophisticated

Data D

Amedium

Data D

Asimple

Data D Scaling Algorithms
with Resources

Algo A Algo A Algo A

D1: Simple
Game Objects Scaling Data Sets

with Resources

D2
D3: Fine-grain
Polytope Objects

Scripted Game-World Interactions,
Unbreakable Objects

Open-Ended Game-World Interactions,
Dynamic Fracture Mechanics

22

Application Use Scenario

  Need knowledge of PDF[A(Ij)] to compute the speedup S

 Determine PDF[A(Ij-1)…A(Ij-M)]
 Assume PDF[A(Ij)]≈ PDF[A(Ij-1)…A(Ij-M)] (stability condition)

  Stability condition gives predictive power

22	

Program

Input

A

Ij-1 … Ij-M
  Goal: Find the reasonable

n to reduce expected

completion time of PDF[A
(Ij)] Completion time

P
ro

ba
bi

lit
y

E1 (mean) E2

When will this hold?

We want to determine the speedup S and the number of concurrent instances n on

A(Ij) from PDF with no prior knowledge of the underlying distribution

How do we do this?

23

PDF and Stability Condition

  Randomized algorithms
  Analytically known PDF

  Depends on input size and parameters
(referred to as “size”)

  “Size” might be unknown

  Other algorithms
  PDF is analytically unknown/

intractable

23	

Run:me	
Es:ma:on	

  Holds statically over j for inputs
of the same “size”

  Graph algos: and

  Holds for sufficiently slow
variations

  |Ij-M|≈ …≈|Ij-1|≈|Ij|
  Example: TSP for trucks in

continental United States
  Fixed grid size
  Similar paths

PDF[A(Ij)] ≈ PDF[A(Ij-1)…A(Ij-M)]

24

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

T0

T2 T3 T1

T5 T4

T6 T7
Real-Time Task-Graph
-  Application decomposed
 into Tasks and
 Precedence Constraints

-  Responsiveness
 guaranteed by Real-time
 semantics (hard or
 probabilistic)

Implement with
High-Productivity,
Large Scale
Programming flows

C, C++, Java: Monolithic App
-  100Ks to Millions of LoC

-  No analyzable structure for
 responsiveness and scaling

-  Responsiveness is entirely an
 emergent attribute
(currently tuning this is an art) Need a new bag of tricks to Scale

Semantics in Monolithic Applications

