
Tushar Kumar, Romain Cledat,
and Santosh Pande

Dynamic Tuning of Feature Set
in Highly Variant Interactive Applications

EMSOFT 2010

2

Motivation

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

30 fps

Pe
r-

Fr
am

e
Ti

m
e

Slow Processor

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

30 fps

Pe
r-

Fr
am

e
Ti

m
e

Slow Processor

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

30 fps

Pe
r-

Fr
am

e
Ti

m
e

Fa
st

er
Co

m
pu

ta
tio

n

Slow Processor Fast Processor

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

30 fps

Pe
r-

Fr
am

e
Ti

m
e

Fa
st

er
Co

m
pu

ta
tio

n

Slow Processor

Idling CPU,
No Benefit!

Fast Processor

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

30 fps

Pe
r-

Fr
am

e
Ti

m
e

Fa
st

er
Co

m
pu

ta
tio

n

Slow Processor

Idling CPU,
No Benefit!

M
or

e
So

ph
is

tic
at

ed
Co

m
pu

ta
tio

n

Richer
Feature Set
Expressed

Fast Processor

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

 Design goal

30 fps

Pe
r-

Fr
am

e
Ti

m
e

Fa
st

er
Co

m
pu

ta
tio

n

Slow Processor

Idling CPU,
No Benefit!

M
or

e
So

ph
is

tic
at

ed
Co

m
pu

ta
tio

n

Richer
Feature Set
Expressed

Fast Processor

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

 Design goal
 Provide the richest, most engrossing experience possible to the interactive user

30 fps

Pe
r-

Fr
am

e
Ti

m
e

Fa
st

er
Co

m
pu

ta
tio

n

Slow Processor

Idling CPU,
No Benefit!

M
or

e
So

ph
is

tic
at

ed
Co

m
pu

ta
tio

n

Richer
Feature Set
Expressed

Fast Processor

2

Motivation
 An entire class of frame-oriented, interactive applications currently lack

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

 Design goal
 Provide the richest, most engrossing experience possible to the interactive user
 MAXIMIZE Feature Set, but stay RESPONSIVE

30 fps

Pe
r-

Fr
am

e
Ti

m
e

Fa
st

er
Co

m
pu

ta
tio

n

Slow Processor

Idling CPU,
No Benefit!

M
or

e
So

ph
is

tic
at

ed
Co

m
pu

ta
tio

n

Richer
Feature Set
Expressed

Fast Processor

3

Representative Applications

3

Representative Applications
 MPEG2 Encoder

3

Representative Applications
 MPEG2 Encoder

 Motion Estimation algorithm dominates per-frame time
 Search-Window-Size parameter dramatically scales:

 Per-frame encoding time

3

Representative Applications
 MPEG2 Encoder

 Motion Estimation algorithm dominates per-frame time
 Search-Window-Size parameter dramatically scales:

 Per-frame encoding time
 Achieved compression of video

3

Representative Applications
 MPEG2 Encoder

 Motion Estimation algorithm dominates per-frame time
 Search-Window-Size parameter dramatically scales:

 Per-frame encoding time
 Achieved compression of video

 Torque Game Engine (www.torquepowered.com)
 AI algorithms dominate per-frame time, when there are large number

of simulated enemies (bots)
 Multiple AI parameters scale:

3

Representative Applications
 MPEG2 Encoder

 Motion Estimation algorithm dominates per-frame time
 Search-Window-Size parameter dramatically scales:

 Per-frame encoding time
 Achieved compression of video

 Torque Game Engine (www.torquepowered.com)
 AI algorithms dominate per-frame time, when there are large number

of simulated enemies (bots)
 Multiple AI parameters scale:

 Frame-rate
 Intelligence exhibited by bots

3

Representative Applications
 MPEG2 Encoder

 Motion Estimation algorithm dominates per-frame time
 Search-Window-Size parameter dramatically scales:

 Per-frame encoding time
 Achieved compression of video

 Torque Game Engine (www.torquepowered.com)
 AI algorithms dominate per-frame time, when there are large number

of simulated enemies (bots)
 Multiple AI parameters scale:

 Frame-rate
 Intelligence exhibited by bots

 Scalable Algorithms are common and dominant

3

Representative Applications
 MPEG2 Encoder

 Motion Estimation algorithm dominates per-frame time
 Search-Window-Size parameter dramatically scales:

 Per-frame encoding time
 Achieved compression of video

 Torque Game Engine (www.torquepowered.com)
 AI algorithms dominate per-frame time, when there are large number

of simulated enemies (bots)
 Multiple AI parameters scale:

 Frame-rate
 Intelligence exhibited by bots

 Scalable Algorithms are common and dominant
 Let X denote the scaling parameter (application-specific choice)

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

t = 20 sec

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

t = 20 sec Data-Set #1
(e.g., 320x240 video)

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

t = 20 sec

t = 5 sec

t = 20 sec

Data-Set #1
(e.g., 320x240 video)

Data-Set #2
(e.g., 640x480 video)

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

t = 20 sec

t = 5 sec

t = 20 sec

Data-Set #1
(e.g., 320x240 video)

Data-Set #2
(e.g., 640x480 video)

Scaling Param X

Quality
of

Result
Q

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

t = 20 sec

t = 5 sec

t = 20 sec

Data-Set #1
(e.g., 320x240 video)

Data-Set #2
(e.g., 640x480 video)

Scaling Param X

Quality
of

Result
Q

X-Y, X-Q Response Characteristics
 Highly time-varying, data-set dependent � No fixed relationships

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

t = 20 sec

t = 5 sec

t = 20 sec

Data-Set #1
(e.g., 320x240 video)

Data-Set #2
(e.g., 640x480 video)

Scaling Param X

Quality
of

Result
Q

X-Y, X-Q Response Characteristics
 Highly time-varying, data-set dependent � No fixed relationships
 For practical purposes: UNKNOWN, entirely EMERGENT behavior

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

t = 20 sec

t = 5 sec

t = 20 sec

Data-Set #1
(e.g., 320x240 video)

Data-Set #2
(e.g., 640x480 video)

Scaling Param X

Quality
of

Result
Q

X-Y, X-Q Response Characteristics
 Highly time-varying, data-set dependent � No fixed relationships
 For practical purposes: UNKNOWN, entirely EMERGENT behavior

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

t = 20 sec

t = 5 sec

t = 20 sec

Data-Set #1
(e.g., 320x240 video)

Data-Set #2
(e.g., 640x480 video)

Scaling Param X

Quality
of

Result
Q

X-Y, X-Q Response Characteristics
 Highly time-varying, data-set dependent � No fixed relationships
 For practical purposes: UNKNOWN, entirely EMERGENT behavior

So how do programmers currently tune?
 Impose severe limitations:

 Video surveillance (slower motion, fixed background), at 320x240 resolution
 Then: Fix X to least harmful value

4

Challenges in Tuning Feature Set

Scaling Param X

Frame
Time

Y
t = 5 sec

t = 20 sec

t = 5 sec

t = 20 sec

Data-Set #1
(e.g., 320x240 video)

Data-Set #2
(e.g., 640x480 video)

Scaling Param X

Quality
of

Result
Q

X-Y, X-Q Response Characteristics
 Highly time-varying, data-set dependent � No fixed relationships
 For practical purposes: UNKNOWN, entirely EMERGENT behavior

So how do programmers currently tune?
 Impose severe limitations:

 Video surveillance (slower motion, fixed background), at 320x240 resolution
 Then: Fix X to least harmful value

 Or, manually tune to each game-play scenario, tune for Xbox vs PS3

5

Our Approach

5

Our Approach

 Premise: Modeling emergent response behavior is hard!

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

 Place only an EASY burden on the Programmer:
 Identifies application-specific scale parameter X (WHAT to scale)

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

 Place only an EASY burden on the Programmer:
 Identifies application-specific scale parameter X (WHAT to scale)
 Specifies desired frame-rate Y to achieve (WHAT to achieve)

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

 Place only an EASY burden on the Programmer:
 Identifies application-specific scale parameter X (WHAT to scale)
 Specifies desired frame-rate Y to achieve (WHAT to achieve)
	
 (Implicit: Quality-of-Result Q scales with Y)

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

 Place only an EASY burden on the Programmer:
 Identifies application-specific scale parameter X (WHAT to scale)
 Specifies desired frame-rate Y to achieve (WHAT to achieve)
	
 (Implicit: Quality-of-Result Q scales with Y)

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

 Place only an EASY burden on the Programmer:
 Identifies application-specific scale parameter X (WHAT to scale)
 Specifies desired frame-rate Y to achieve (WHAT to achieve)
	
 (Implicit: Quality-of-Result Q scales with Y)

 HOW to achieve?

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

 Place only an EASY burden on the Programmer:
 Identifies application-specific scale parameter X (WHAT to scale)
 Specifies desired frame-rate Y to achieve (WHAT to achieve)
	
 (Implicit: Quality-of-Result Q scales with Y)

 HOW to achieve?
 HARD: Usually beyond scope of most programmers and even domain

experts

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

 Place only an EASY burden on the Programmer:
 Identifies application-specific scale parameter X (WHAT to scale)
 Specifies desired frame-rate Y to achieve (WHAT to achieve)
	
 (Implicit: Quality-of-Result Q scales with Y)

 HOW to achieve?
 HARD: Usually beyond scope of most programmers and even domain

experts

	
 What will it take for a generic, broadly applicable
 Runtime Controller to effectively control frame-QoS?

5

Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

 Place only an EASY burden on the Programmer:
 Identifies application-specific scale parameter X (WHAT to scale)
 Specifies desired frame-rate Y to achieve (WHAT to achieve)
	
 (Implicit: Quality-of-Result Q scales with Y)

 HOW to achieve?
 HARD: Usually beyond scope of most programmers and even domain

experts

	
 What will it take for a generic, broadly applicable
 Runtime Controller to effectively control frame-QoS?

Main Contribution
 Simplicity of Use,

Generality of Application

6

Control Problem

Frame
Time

Y

Frame Sequence

6

Control Problem

 Soft Real Time nature

Frame
Time

Y

Frame Sequence

6

Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

Frame
Time

Y

Frame Sequence

6

Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

Yobj ± d

Desired
Frame-time
ObjectiveFrame

Time
Y

Frame Sequence

6

Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

Yobj ± d

Desired
Frame-time
ObjectiveFrame

Time
Y

Frame Sequence

Metric#1
Satisfaction Ratio (SR):

Fraction of frames with Y
within Yobj ± d

6

Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

Yobj ± d

Desired
Frame-time
ObjectiveFrame

Time
Y

Frame Sequence

Metric#1
Satisfaction Ratio (SR):

Fraction of frames with Y
within Yobj ± d

Metric#2
Distortion:

Deviation from Yobj

6

Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

 What’s a good SR on a data-set?

Yobj ± d

Desired
Frame-time
ObjectiveFrame

Time
Y

Frame Sequence

Metric#1
Satisfaction Ratio (SR):

Fraction of frames with Y
within Yobj ± d

Metric#2
Distortion:

Deviation from Yobj

6

Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

 What’s a good SR on a data-set?
 30%, 50%, 90%, 99%?

Yobj ± d

Desired
Frame-time
ObjectiveFrame

Time
Y

Frame Sequence

Metric#1
Satisfaction Ratio (SR):

Fraction of frames with Y
within Yobj ± d

Metric#2
Distortion:

Deviation from Yobj

6

Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

 What’s a good SR on a data-set?
 30%, 50%, 90%, 99%?
 A specified objective Yobj ± d may be impossible to achieve

Yobj ± d

Desired
Frame-time
ObjectiveFrame

Time
Y

Frame Sequence

Metric#1
Satisfaction Ratio (SR):

Fraction of frames with Y
within Yobj ± d

Metric#2
Distortion:

Deviation from Yobj

6

Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

 What’s a good SR on a data-set?
 30%, 50%, 90%, 99%?
 A specified objective Yobj ± d may be impossible to achieve
 In general, application characteristics are unknown, \ best feasible SR is unknown

Yobj ± d

Desired
Frame-time
ObjectiveFrame

Time
Y

Frame Sequence

Metric#1
Satisfaction Ratio (SR):

Fraction of frames with Y
within Yobj ± d

Metric#2
Distortion:

Deviation from Yobj

6

Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

 What’s a good SR on a data-set?
 30%, 50%, 90%, 99%?
 A specified objective Yobj ± d may be impossible to achieve
 In general, application characteristics are unknown, \ best feasible SR is unknown

 � Only option: compare against SR when X has best fixed setting

Yobj ± d

Desired
Frame-time
ObjectiveFrame

Time
Y

Frame Sequence

Metric#1
Satisfaction Ratio (SR):

Fraction of frames with Y
within Yobj ± d

Metric#2
Distortion:

Deviation from Yobj

7

Runtime Controller: Attempt#1
 Goal: Find best fixed X for each data-set

 Highly Sub-Optimal!

7

Runtime Controller: Attempt#1
 Goal: Find best fixed X for each data-set

 Highly Sub-Optimal!

MPEG2 Encoder Frame Sequence (Fixed X)

7

Runtime Controller: Attempt#1
 Goal: Find best fixed X for each data-set

 Highly Sub-Optimal!

MPEG2 Encoder Frame Sequence (Fixed X)

Instantaneous frame-times
have significant transients
(Not perceived by user!)

7

Runtime Controller: Attempt#1
 Goal: Find best fixed X for each data-set

 Highly Sub-Optimal!

MPEG2 Encoder Frame Sequence (Fixed X)

Instantaneous frame-times
have significant transients
(Not perceived by user!)

Moving average of previous 7
frames is mostly smooth
(Closer to user perception)

7

Runtime Controller: Attempt#1
 Goal: Find best fixed X for each data-set

 Highly Sub-Optimal!

MPEG2 Encoder Frame Sequence (Fixed X)

Instantaneous frame-times
have significant transients
(Not perceived by user!)

Moving average of previous 7
frames is mostly smooth
(Closer to user perception)

Lesson#1
-Control perceived frame-time (much easier)
-Programmer specifies: Window of Perception W

7

Runtime Controller: Attempt#1
 Goal: Find best fixed X for each data-set

 Highly Sub-Optimal!

MPEG2 Encoder Frame Sequence (Fixed X)

Yobj ± d

Instantaneous frame-times
have significant transients
(Not perceived by user!)

Moving average of previous 7
frames is mostly smooth
(Closer to user perception)

Lesson#1
-Control perceived frame-time (much easier)
-Programmer specifies: Window of Perception W

7

Runtime Controller: Attempt#1
 Goal: Find best fixed X for each data-set

 Highly Sub-Optimal!

MPEG2 Encoder Frame Sequence (Fixed X)

Yobj ± d

Execution characteristics can vary significantly over regions
(Regional Dependence)

Instantaneous frame-times
have significant transients
(Not perceived by user!)

Moving average of previous 7
frames is mostly smooth
(Closer to user perception)

Lesson#1
-Control perceived frame-time (much easier)
-Programmer specifies: Window of Perception W

7

Runtime Controller: Attempt#1
 Goal: Find best fixed X for each data-set

 Highly Sub-Optimal!

MPEG2 Encoder Frame Sequence (Fixed X)

Lesson#2
Train X to each region!

Yobj ± d

Execution characteristics can vary significantly over regions
(Regional Dependence)

Instantaneous frame-times
have significant transients
(Not perceived by user!)

Moving average of previous 7
frames is mostly smooth
(Closer to user perception)

Lesson#1
-Control perceived frame-time (much easier)
-Programmer specifies: Window of Perception W

8

Runtime Controller: Attempt#2

8

Runtime Controller: Attempt#2
 Goal: Train X to each region

8

Runtime Controller: Attempt#2
 Goal: Train X to each region

 Reinforcement learning of X-Y relationship
 Too slow!

8

Runtime Controller: Attempt#2
 Goal: Train X to each region

 Reinforcement learning of X-Y relationship
 Too slow!
	
 X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning

can be used to subsequently control Y

 Find good X for region before X-Y relationship changes significantly

8

Runtime Controller: Attempt#2
 Goal: Train X to each region

 Reinforcement learning of X-Y relationship
 Too slow!
	
 X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning

can be used to subsequently control Y

 Find good X for region before X-Y relationship changes significantly
 Then exploit good X for rest of (hopefully long) region � achieves high SR

8

Runtime Controller: Attempt#2
 Goal: Train X to each region

 Reinforcement learning of X-Y relationship
 Too slow!
	
 X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning

can be used to subsequently control Y

 Find good X for region before X-Y relationship changes significantly
 Then exploit good X for rest of (hopefully long) region � achieves high SR

Region 1 Region 2

8

Runtime Controller: Attempt#2
 Goal: Train X to each region

 Reinforcement learning of X-Y relationship
 Too slow!
	
 X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning

can be used to subsequently control Y

 Find good X for region before X-Y relationship changes significantly
 Then exploit good X for rest of (hopefully long) region � achieves high SR

Region 1 Region 2

Explore X

8

Runtime Controller: Attempt#2
 Goal: Train X to each region

 Reinforcement learning of X-Y relationship
 Too slow!
	
 X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning

can be used to subsequently control Y

 Find good X for region before X-Y relationship changes significantly
 Then exploit good X for rest of (hopefully long) region � achieves high SR

Region 1 Region 2

Explore X Use good X

8

Runtime Controller: Attempt#2
 Goal: Train X to each region

 Reinforcement learning of X-Y relationship
 Too slow!
	
 X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning

can be used to subsequently control Y

 Find good X for region before X-Y relationship changes significantly
 Then exploit good X for rest of (hopefully long) region � achieves high SR

Region 1 Region 2

Explore X Use good X

Explore X Use good XUse good X

8

Runtime Controller: Attempt#2
 Goal: Train X to each region

 Reinforcement learning of X-Y relationship
 Too slow!
	
 X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning

can be used to subsequently control Y

 Find good X for region before X-Y relationship changes significantly
 Then exploit good X for rest of (hopefully long) region � achieves high SR

Region 1 Region 2

Explore X Use good X

Explore X Use good X Observation
Application “world state” does
not change dramatically faster
than user perception time
Lesson#3

Stable Region Length >> W,
with high probability

Use good X

9

Runtime Controller: Attempt#3

9

Runtime Controller: Attempt#3
 Use Feedback Controller: adjust X based on observed error ∆Y

9

Runtime Controller: Attempt#3
 Use Feedback Controller: adjust X based on observed error ∆Y

 Need to assume monotonicity in X-Y relationship

9

Runtime Controller: Attempt#3
 Use Feedback Controller: adjust X based on observed error ∆Y

 Need to assume monotonicity in X-Y relationship

 But X-Y relationship can remain time-varying

 Simplest: P controller

9

Runtime Controller: Attempt#3
 Use Feedback Controller: adjust X based on observed error ∆Y

 Need to assume monotonicity in X-Y relationship

 But X-Y relationship can remain time-varying

 Simplest: P controller

	
 ∆X  (1/α) ∆Y

9

Runtime Controller: Attempt#3
 Use Feedback Controller: adjust X based on observed error ∆Y

 Need to assume monotonicity in X-Y relationship

 But X-Y relationship can remain time-varying

 Simplest: P controller

	
 ∆X  (1/α) ∆Y
(Controller Gain: 1/α)

9

Runtime Controller: Attempt#3
 Use Feedback Controller: adjust X based on observed error ∆Y

 Need to assume monotonicity in X-Y relationship

 But X-Y relationship can remain time-varying

 Simplest: P controller

	
 ∆X  (1/α) ∆Y
(Controller Gain: 1/α)

9

Runtime Controller: Attempt#3
 Use Feedback Controller: adjust X based on observed error ∆Y

 Need to assume monotonicity in X-Y relationship

 But X-Y relationship can remain time-varying

 Simplest: P controller

	
 ∆X  (1/α) ∆Y
(Controller Gain: 1/α)

Lesson#3
Feedback Control works

poorly, unless α is in a
narrow range determined
by data-set

10

Adaptive Feedback Controller

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified
 Minimizes influence of frequent transients

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified
 Minimizes influence of frequent transients
 When is “failure” too long?  Perceptible to user

#3. Stable Region length >> W

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified
 Minimizes influence of frequent transients
 When is “failure” too long?  Perceptible to user

#3. Stable Region length >> W
 Determines quantitative metrics and tests to adapt policy

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified
 Minimizes influence of frequent transients
 When is “failure” too long?  Perceptible to user

#3. Stable Region length >> W
 Determines quantitative metrics and tests to adapt policy

 Simplicity in Feedback Law:

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified
 Minimizes influence of frequent transients
 When is “failure” too long?  Perceptible to user

#3. Stable Region length >> W
 Determines quantitative metrics and tests to adapt policy

 Simplicity in Feedback Law:
	
 ∆X  (1/α) ∆Y

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified
 Minimizes influence of frequent transients
 When is “failure” too long?  Perceptible to user

#3. Stable Region length >> W
 Determines quantitative metrics and tests to adapt policy

 Simplicity in Feedback Law:
	
 ∆X  (1/α) ∆Y
 Sophistication in Adaptive Policy:

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified
 Minimizes influence of frequent transients
 When is “failure” too long?  Perceptible to user

#3. Stable Region length >> W
 Determines quantitative metrics and tests to adapt policy

 Simplicity in Feedback Law:
	
 ∆X  (1/α) ∆Y
 Sophistication in Adaptive Policy:
	
 How/When to adjust α?

10

Adaptive Feedback Controller
 Programmer specifies: X, Yobj ± d, W
 Objective: maintain a high SR

 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified
 Minimizes influence of frequent transients
 When is “failure” too long?  Perceptible to user

#3. Stable Region length >> W
 Determines quantitative metrics and tests to adapt policy

 Simplicity in Feedback Law:
	
 ∆X  (1/α) ∆Y
 Sophistication in Adaptive Policy:
	
 How/When to adjust α?

Sufficient to deliver
significant improvements
in SR

11

Adaptive Policy Design

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

 Strategy

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

 Strategy
 P controller’s simplicity � clearly identifiable Failure Modes

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

 Strategy
 P controller’s simplicity � clearly identifiable Failure Modes

 α needs to be corrected within narrow data-set dependent range (for high SR)

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

 Strategy
 P controller’s simplicity � clearly identifiable Failure Modes

 α needs to be corrected within narrow data-set dependent range (for high SR)

Global Failure (e.g., 320x240 vs 640x480 data-sets):
orders-of-magnitude correction in α in single step

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

 Strategy
 P controller’s simplicity � clearly identifiable Failure Modes

 α needs to be corrected within narrow data-set dependent range (for high SR)

Global Failure (e.g., 320x240 vs 640x480 data-sets):
orders-of-magnitude correction in α in single step

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

 Strategy
 P controller’s simplicity � clearly identifiable Failure Modes

 α needs to be corrected within narrow data-set dependent range (for high SR)

Global Failure (e.g., 320x240 vs 640x480 data-sets):
orders-of-magnitude correction in α in single step

Oscillations
Failure

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

 Strategy
 P controller’s simplicity � clearly identifiable Failure Modes

 α needs to be corrected within narrow data-set dependent range (for high SR)

Global Failure (e.g., 320x240 vs 640x480 data-sets):
orders-of-magnitude correction in α in single step

Oscillations
Failure

Sluggishness
Failure

11

Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

 Strategy
 P controller’s simplicity � clearly identifiable Failure Modes

 α needs to be corrected within narrow data-set dependent range (for high SR)

Global Failure (e.g., 320x240 vs 640x480 data-sets):
orders-of-magnitude correction in α in single step

Oscillations
Failure

Sluggishness
Failure

Regional
fine-tuning

12

Illustration of Oscillation Failure Mode

12

Illustration of Oscillation Failure Mode
 Failure Metrics

 H, L
 η�˜ d * η + H * W / L, (0 < d < 1)

12

Illustration of Oscillation Failure Mode
 Failure Metrics

 H, L
 η�˜ d * η + H * W / L, (0 < d < 1)

 Failure Detection
 η > t

 with t = 1/(1-d) * 2d * 1.0

 Policy Adaptation
 αnew�˜ α *η/ t

12

Illustration of Oscillation Failure Mode
 Failure Metrics

 H, L
 η�˜ d * η + H * W / L, (0 < d < 1)

 Failure Detection
 η > t

 with t = 1/(1-d) * 2d * 1.0

 Policy Adaptation
 αnew�˜ α *η/ t

 Accumulative metrics for failure
 Weighted to gradually forget old learning, at

rate d
 Robustness against transients
 Responsive to persistent changed behavior
 Constant state � very low runtime overhead of

controller

13

Execution Trace: MPEG2 Encoder

13

Execution Trace: MPEG2 Encoder

X → Search Window Size : {0 → 30,1 → 20, 2 → 15, 3 → 10, 4 → 5, 5 → 2, 6 → 1, 7 → 0}

Integral X: Easier for programmer to just sample Search Window Size over sufficient range

14

Benchmark Result: MPEG2 Encoder

14

Benchmark Result: MPEG2 Encoder

 Video sequence: dolbycity320x240
 Adaptive Controller better than envelope of best fixed Xs

 Due to Regional tuning of X vs only global tuning

15

Benchmark Result: MPEG2 Encoder

15

Benchmark Result: MPEG2 Encoder

 Video sequence: dolbycity 640x480
 Adaptive better than every Fixed X case overall

 Even though for a given Yobj, a particular Fixed X might match or exceed Adaptive

16

Benchmark Result: Torque Game Engine

16

Benchmark Result: Torque Game Engine

 Quality of Result: Gameplay Intelligence

16

Benchmark Result: Torque Game Engine

 Quality of Result: Gameplay Intelligence
 For Yobj = 0.04 secs

 Adaptive: 24ms of AI/frame
 Best fixed X: 14ms of AI/frame

17

Related Work

17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]

17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]

 “Ready-made” Adaptive techniques
 Illustrated by: Web-cache QoS optimization [Lu et al. IWQoS 2002]
	
 Adaptive Pole-placement controller-design, based on periodically re-estimating a 2nd order parametric

LTI model

17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]

 “Ready-made” Adaptive techniques
 Illustrated by: Web-cache QoS optimization [Lu et al. IWQoS 2002]
	
 Adaptive Pole-placement controller-design, based on periodically re-estimating a 2nd order parametric

LTI model

 Our work is an Adaptive Gain-Scheduling controller
 Adjust control-law directly to overcome observed failures

17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]

 “Ready-made” Adaptive techniques
 Illustrated by: Web-cache QoS optimization [Lu et al. IWQoS 2002]
	
 Adaptive Pole-placement controller-design, based on periodically re-estimating a 2nd order parametric

LTI model

 Our work is an Adaptive Gain-Scheduling controller
 Adjust control-law directly to overcome observed failures

 Controller is domain-specific rather than application-specific
 Based on broad domain-assumptions, rather than linear dynamical models of plant
 Semi-physical System-Identification

17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]

 “Ready-made” Adaptive techniques
 Illustrated by: Web-cache QoS optimization [Lu et al. IWQoS 2002]
	
 Adaptive Pole-placement controller-design, based on periodically re-estimating a 2nd order parametric

LTI model

 Our work is an Adaptive Gain-Scheduling controller
 Adjust control-law directly to overcome observed failures

 Controller is domain-specific rather than application-specific
 Based on broad domain-assumptions, rather than linear dynamical models of plant
 Semi-physical System-Identification

 Very effective, but Best-Effort:
 No guarantees on Safety, Robustness, Reachability

18

Conclusion

18

Conclusion
 Our controller greatly simplifies frame-QoS control

 Programmers avoid having to model emergent behaviors
 Incorporate controller as a library

 exceedingly light-weight: < 0.05% overhead

18

Conclusion
 Our controller greatly simplifies frame-QoS control

 Programmers avoid having to model emergent behaviors
 Incorporate controller as a library

 exceedingly light-weight: < 0.05% overhead

 Generality
 Any application that satisfies Domain Assumptions

 Monotonic response, perceived frame-rate, Stable response periods >> W frames
 Graceful degradation when not

 No general-purpose alternatives available that work well for interactive
applications whose behavior is UNKNOWN, EMERGENT
and NON-ANALYZABLE

18

Conclusion
 Our controller greatly simplifies frame-QoS control

 Programmers avoid having to model emergent behaviors
 Incorporate controller as a library

 exceedingly light-weight: < 0.05% overhead

 Generality
 Any application that satisfies Domain Assumptions

 Monotonic response, perceived frame-rate, Stable response periods >> W frames
 Graceful degradation when not

 No general-purpose alternatives available that work well for interactive
applications whose behavior is UNKNOWN, EMERGENT
and NON-ANALYZABLE

 Future Work
 Multiple X, Multiple prioritized Y, Explicit Q
 Domain Observations �Adaptive Control + Least-Squares Function Estimation
 But, much more compute intensive controller

19

Thank you!

 Questions?

20

Torque Game Engine: Measured Behavior

objective:
25 to 42 fps

20

Torque Game Engine: Measured Behavior

objective:
25 to 42 fps

C
on

tro
lle

r a
vo

id
s

un
ac

ce
pt

ab
ly

 lo
w

FP

S
, b

y
re

du
ci

ng
 A

I

20

Torque Game Engine: Measured Behavior

objective:
25 to 42 fps

C
on

tro
lle

r a
vo

id
s

un
ac

ce
pt

ab
ly

 lo
w

FP

S
, b

y
re

du
ci

ng
 A

I

C
on

tro
lle

r a
vo

id
s

un
ne

ce
ss

ar
ily

 h
ig

h
FP

S
, b

y
in

cr
ea

si
ng

 A
I

21

Distortion in Torque

22

Standard Deviation in Torque

23

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

23

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

23

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

T0

T2 T3T1

T5T4

T6 T7

23

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

T0

T2 T3T1

T5T4

T6 T7
Real-Time Task-Graph
- Application decomposed
 into Tasks and
 Precedence Constraints

- Responsiveness
 guaranteed by Real-time
 semantics (hard or
 probabilistic)

23

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

T0

T2 T3T1

T5T4

T6 T7
Real-Time Task-Graph
- Application decomposed
 into Tasks and
 Precedence Constraints

- Responsiveness
 guaranteed by Real-time
 semantics (hard or
 probabilistic)

Implement with
High-Productivity,
Large Scale
Programming flows

23

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

T0

T2 T3T1

T5T4

T6 T7
Real-Time Task-Graph
- Application decomposed
 into Tasks and
 Precedence Constraints

- Responsiveness
 guaranteed by Real-time
 semantics (hard or
 probabilistic)

Implement with
High-Productivity,
Large Scale
Programming flows

23

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

T0

T2 T3T1

T5T4

T6 T7
Real-Time Task-Graph
- Application decomposed
 into Tasks and
 Precedence Constraints

- Responsiveness
 guaranteed by Real-time
 semantics (hard or
 probabilistic)

Implement with
High-Productivity,
Large Scale
Programming flows

C, C++, Java: Monolithic App
- 100Ks to Millions of LoC

- No analyzable structure for
 responsiveness and scaling

- Responsiveness and Quality
entirely emergent attributes
(currently tuning this is an art)

23

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

T0

T2 T3T1

T5T4

T6 T7
Real-Time Task-Graph
- Application decomposed
 into Tasks and
 Precedence Constraints

- Responsiveness
 guaranteed by Real-time
 semantics (hard or
 probabilistic)

Implement with
High-Productivity,
Large Scale
Programming flows

C, C++, Java: Monolithic App
- 100Ks to Millions of LoC

- No analyzable structure for
 responsiveness and scaling

- Responsiveness and Quality
entirely emergent attributes
(currently tuning this is an art)

Need a new bag of tricks to Scale
Semantics in Monolithic Applications

24

Runtime Controller

P controller

∆X  (1/α) ∆Y

Application

Y  App(X)
(unknown)

[Yobj - δ, Yobj + δ] :
desired objective

window for Y

feedback Y

X Y

Adaptive Policy
Is α performing as well as possible?

Policy Failure : αnew  adjust(α)

