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Motivation
 An entire class of frame-oriented, interactive applications currently lack 

a systematic optimization methodology
 Gaming, Multimedia, Interactive Visualization
 Conventionally developed C/C++/Java applications � lack analyzable semantics

 Design goal
 Provide the richest, most engrossing experience possible to the interactive user
 MAXIMIZE Feature Set, but stay RESPONSIVE
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Representative Applications
 MPEG2 Encoder

 Motion Estimation algorithm dominates per-frame time
 Search-Window-Size parameter dramatically scales:

 Per-frame encoding time
 Achieved compression of video

 Torque Game Engine (www.torquepowered.com)
 AI algorithms dominate per-frame time, when there are large number 

of simulated enemies (bots)
 Multiple AI parameters scale:

 Frame-rate
 Intelligence exhibited by bots

 Scalable Algorithms are common and dominant
 Let X denote the scaling parameter (application-specific choice)
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Result
Q

X-Y, X-Q Response Characteristics
 Highly time-varying, data-set dependent � No fixed relationships
 For practical purposes: UNKNOWN, entirely EMERGENT behavior

So how do programmers currently tune?
 Impose severe limitations:

 Video surveillance (slower motion, fixed background), at 320x240 resolution
 Then: Fix X to least harmful value

 Or, manually tune to each game-play scenario, tune for Xbox vs PS3
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Our Approach

 Premise: Modeling emergent response behavior is hard!
 Infeasible for programmers and even domain experts

 Place only an EASY burden on the Programmer:
 Identifies application-specific scale parameter X (WHAT to scale)
 Specifies desired frame-rate Y to achieve (WHAT to achieve)
	   (Implicit: Quality-of-Result Q scales with Y)

 HOW to achieve?
 HARD: Usually beyond scope of most programmers and even domain 

experts

	 What will it take for a generic, broadly applicable
    Runtime Controller to effectively control frame-QoS?

Main Contribution
 Simplicity of Use,

Generality of Application
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Control Problem

 Soft Real Time nature
 Probabilistic/best-effort suffices

“Maintain 25-35 frames-per-second with high probability”

 What’s a good SR on a data-set?
 30%, 50%, 90%, 99%?
 A specified objective Yobj ± d may be impossible to achieve
 In general, application characteristics are unknown, \ best feasible SR is unknown

  � Only option: compare against SR when X has best fixed setting

Yobj ± d

Desired
Frame-time
ObjectiveFrame

Time
Y

Frame Sequence

Metric#1
Satisfaction Ratio (SR):

Fraction of frames with Y 
within Yobj ± d

Metric#2
Distortion:

Deviation from Yobj
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Runtime Controller: Attempt#1
 Goal: Find best fixed X for each data-set

 Highly Sub-Optimal!

MPEG2 Encoder Frame Sequence (Fixed X)

Lesson#2
Train X to each region!

Yobj ± d

Execution characteristics can vary significantly over regions
(Regional Dependence)

Instantaneous frame-times 
have significant transients
(Not perceived by user!)

Moving average of previous 7 
frames is mostly smooth
(Closer to user perception)

Lesson#1
-Control perceived frame-time (much easier)
-Programmer specifies: Window of Perception W
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Runtime Controller: Attempt#2
 Goal: Train X to each region

 Reinforcement learning of X-Y relationship
 Too slow!
	 X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning 

can be used to subsequently control Y

 Find good X for region before X-Y relationship changes significantly
 Then exploit good X for rest of (hopefully long) region � achieves high SR

Region 1 Region 2

Explore X Use good X

Explore X Use good X Observation
Application “world state” does 
not change dramatically faster 
than user perception time
Lesson#3

Stable Region Length >> W, 
with high probability

Use good X
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Runtime Controller: Attempt#3
 Use Feedback Controller: adjust X based on observed error ∆Y

 Need to assume monotonicity in X-Y relationship

 But X-Y relationship can remain time-varying

 Simplest: P controller

	 ∆X  (1/α) ∆Y
( Controller Gain: 1/α)

Lesson#3
Feedback Control works 

poorly, unless α is in a 
narrow range determined 
by data-set
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 Domain Assumptions help us design generic controller
#1. Monotonic X-Y

 Makes rapid feedback-control feasible, dramatically simplifies learning

#2. Only perceived frame-rate matters, W specified
 Minimizes influence of frequent transients
 When is “failure” too long?  Perceptible to user

#3. Stable Region length >> W
 Determines quantitative metrics and tests to adapt policy

 Simplicity in Feedback Law:
	  ∆X  (1/α) ∆Y
 Sophistication in Adaptive Policy:
	     How/When to adjust α?

Sufficient to deliver
significant improvements
in SR
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Adaptive Policy Design
 Criteria for Significant Policy failure

 ∆Y compared to Yobj, and compared to 2*d (error of excessive magnitude)

 Y outside Yobj ± d for more than W frames (error of excessive duration)

 Strategy
 P controller’s simplicity � clearly identifiable Failure Modes

 α needs to be corrected within narrow data-set dependent range (for high SR)

Global Failure (e.g., 320x240 vs 640x480 data-sets):
orders-of-magnitude correction in α in single step

Oscillations
Failure

Sluggishness
Failure

Regional
fine-tuning
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Illustration of Oscillation Failure Mode
 Failure Metrics

 H, L
 η�˜ d * η + H * W / L,  (0 < d < 1)

 Failure Detection
 η > t

    with t = 1/(1-d) * 2d * 1.0

 Policy Adaptation
 αnew�˜ α *η/ t

 Accumulative metrics for failure
 Weighted to gradually forget old learning, at 

rate d
 Robustness against transients
 Responsive to persistent changed behavior
 Constant state � very low runtime overhead of 

controller
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Execution Trace: MPEG2 Encoder

X → Search Window Size : {0 → 30,1 → 20, 2 → 15, 3 → 10, 4 → 5, 5 → 2, 6 → 1, 7 → 0}

Integral X: Easier for programmer to just sample Search Window Size over sufficient range
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Benchmark Result: MPEG2 Encoder

 Video sequence: dolbycity320x240
 Adaptive Controller better than envelope of best fixed Xs

 Due to Regional tuning of X vs only global tuning
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Benchmark Result: MPEG2 Encoder

 Video sequence: dolbycity 640x480
 Adaptive better than every Fixed X case overall

 Even though for a given Yobj, a particular Fixed X might match or exceed Adaptive
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Benchmark Result: Torque Game Engine

 Quality of Result: Gameplay Intelligence
 For Yobj = 0.04 secs

 Adaptive: 24ms of AI/frame
 Best fixed X: 14ms of AI/frame



17

Related Work



17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]



17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]

 “Ready-made” Adaptive techniques
 Illustrated by: Web-cache QoS optimization [Lu et al. IWQoS 2002]
	 Adaptive Pole-placement controller-design, based on periodically re-estimating a 2nd order parametric 

LTI model



17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]

 “Ready-made” Adaptive techniques
 Illustrated by: Web-cache QoS optimization [Lu et al. IWQoS 2002]
	 Adaptive Pole-placement controller-design, based on periodically re-estimating a 2nd order parametric 

LTI model

 Our work is an Adaptive Gain-Scheduling controller
 Adjust control-law directly to overcome observed failures



17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]

 “Ready-made” Adaptive techniques
 Illustrated by: Web-cache QoS optimization [Lu et al. IWQoS 2002]
	 Adaptive Pole-placement controller-design, based on periodically re-estimating a 2nd order parametric 

LTI model

 Our work is an Adaptive Gain-Scheduling controller
 Adjust control-law directly to overcome observed failures

 Controller is domain-specific rather than application-specific
 Based on broad domain-assumptions, rather than linear dynamical models of plant
 Semi-physical System-Identification



17

Related Work
 Real-time techniques already address QoS and Soft Real-time. BUT:

 Application needs to be implemented as Task-Graphs
 With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
 And, Utility functions for QoS provided [Block et al. ECRTS 2008]

 Application-specific techniques
 Rate-distortion control in H.264 encoder
 QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)

[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]

 “Ready-made” Adaptive techniques
 Illustrated by: Web-cache QoS optimization [Lu et al. IWQoS 2002]
	 Adaptive Pole-placement controller-design, based on periodically re-estimating a 2nd order parametric 

LTI model

 Our work is an Adaptive Gain-Scheduling controller
 Adjust control-law directly to overcome observed failures

 Controller is domain-specific rather than application-specific
 Based on broad domain-assumptions, rather than linear dynamical models of plant
 Semi-physical System-Identification

 Very effective, but Best-Effort:
 No guarantees on Safety, Robustness, Reachability



18

Conclusion



18

Conclusion
 Our controller greatly simplifies frame-QoS control

 Programmers avoid having to model emergent behaviors
 Incorporate controller as a library

 exceedingly light-weight: < 0.05% overhead



18

Conclusion
 Our controller greatly simplifies frame-QoS control

 Programmers avoid having to model emergent behaviors
 Incorporate controller as a library

 exceedingly light-weight: < 0.05% overhead

 Generality
 Any application that satisfies Domain Assumptions

 Monotonic response, perceived frame-rate, Stable response periods >> W frames
 Graceful degradation when not

 No general-purpose alternatives available that work well for interactive 
applications whose behavior is UNKNOWN, EMERGENT
and NON-ANALYZABLE



18

Conclusion
 Our controller greatly simplifies frame-QoS control

 Programmers avoid having to model emergent behaviors
 Incorporate controller as a library

 exceedingly light-weight: < 0.05% overhead

 Generality
 Any application that satisfies Domain Assumptions

 Monotonic response, perceived frame-rate, Stable response periods >> W frames
 Graceful degradation when not

 No general-purpose alternatives available that work well for interactive 
applications whose behavior is UNKNOWN, EMERGENT
and NON-ANALYZABLE

 Future Work
 Multiple X, Multiple prioritized Y, Explicit Q
 Domain Observations �Adaptive Control + Least-Squares Function Estimation
 But, much more compute intensive controller
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Thank you!

 Questions?
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Distortion in Torque
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Standard Deviation in Torque
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Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

T0

T2 T3T1

T5T4

T6 T7
Real-Time Task-Graph
- Application decomposed 
   into Tasks and 
   Precedence Constraints

- Responsiveness 
  guaranteed by Real-time 
  semantics (hard or 
  probabilistic)

Implement with
High-Productivity,
Large Scale
Programming flows

C, C++, Java: Monolithic App
- 100Ks to Millions of LoC

- No analyzable structure for
   responsiveness and scaling

- Responsiveness and Quality 
entirely emergent attributes
(currently tuning this is an art)

Need a new bag of tricks to Scale 
Semantics in Monolithic Applications
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Runtime Controller

P controller

∆X  (1/α) ∆Y

Application

Y  App( X )
(unknown)

[Yobj - δ, Yobj + δ] : 
desired objective

window for Y

feedback Y

X Y

Adaptive Policy
Is α performing as well as possible?

Policy Failure : αnew  adjust( α )


