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Motivation

* An entire class of frame-oriented, interactive applications currently lack
a systematic optimization methodology

* Gaming, Multimedia, Interactive Visualization

e Conventionally developed C/C++/Java applications ” lack analyzable semantics

* Design goal

* Provide the richest, most engrossing experience possible to the interactive user
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Motivation

* An entire class of frame-oriented, interactive applications currently lack
a systematic optimization methodology

* Gaming, Multimedia, Interactive Visualization

e Conventionally developed C/C++/Java applications ” lack analyzable semantics

* Design goal
* Provide the richest, most engrossing experience possible to the interactive user
o MAXIMIZE Feature Set, but stay RESPONSIVE
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Representative Applications

* MPEG2 Encoder

e Motion Estimation algorithm dominates per—frame time

e Search-Window-Size parameter dramatically scales:
Per-frame encoding time

Achieved compression of video

* Torque Game Engine (www.torquepowered.com)

o Al algorithms dominate per-frame time, when there are large number
of simulated enemies (bots)

s Multiple Al parameters scale:
Frame-rate

Intelligence exhibited by bots

® Scalable Algorithms are common and dominant
* Let X denote the scaling parameter (application-specific choice)
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X-Y, X-Q Response Characteristics
* Highly time-varying, data-set dependent ” No fixed relationships
* For practical purposes: UNKNOWN, entirely EMERGENT behavior

So how do programmers currently tune?
* Impose severe limitations:

* Video surveillance (slower motion, fixed background), at 320x240 resolution
* Then: Fix X to least harmful value

* Or, manually tune to each game-play scenario, tune for Xbox vs PS3
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® Premise: Modeling emergent response behavior is hard!

e Infeasible for programmers and even domain experts

e Place only an EASY burden on the Programmer:

® Identifies application-specific scale parameter X (WHAT to scale)
® Specifies desired frame-rate Y to achieve (WHAT to achieve)

(Implicit: Quality-of-Result Q scales with Y) Main Contribution
Simplicity of Use,

e HOW to achieve? Generality of Application
e HARD: Usually beyond scope of most programmers and even domain
experts

What will it take for a generic, broadly applicable
Runtime Controller to ejfective])/ control ﬁame— QoS?
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Metric#?2
Distortion:

Deviation from Yob Desired

Frame-time
Objective
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Metric#1
Frame Sequence — - Satisfaction Ratio (SR):

Fraction of frames with Y
e Soft Real Time nature within Yob + d

e Probabilistic/best-effort suffices
“Maintain 25-35 frames-per-second with high probability”

e What’s a good SR on a data-set?
o 30%, 50%, 90%, 99%?
* A specified objective Yobj + ¢ may be impossible to achieve

® In general, application characteristics are unknown, \ best feasible SR is unknown

” Only option: compare against SR when X has best fixed setting
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Y: Frame time (ms)

® Goal: Find best fixed X for each data-set

o Highly Sub-Optimal!

Instantaneous frame-times

have significant transients
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Lesson#2
Train X to each region!

Lesson#1

-Control perceived frame-time (much easier)
-Programmer specifies: Window of Perception W
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X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning
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e Find good X for region before X-Y relationship changes significantly
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Runtime Controller: Attempt#2

® Goal: Train X to each region

e Reinforcement learning of X-Y relationship
e Too slow!

X-Y relationships in MPEG2 Encoder and Torque Game usually change before learning

can be used to subsequently control Y

e Find good X for region before X-Y relationship changes significantly
* Then exploit good X for rest of (hopefully long) region ” achieves high SR

Explore X Use good X Observation

” |\ | Application “world state” does
not change dramatically faster
than user perception time

Explore X: Use good X

U U ! U Lesson#3
Stable Region Length >> W,
\— J
Region 1 Region 2 with high probability
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® Use Feedback Controller: adjust X based on observed error AY
® Need to assume monotonicity in XY relationship

e But X-Y relationship can remain time-varying

L Simplest: P ContrOIIGr ’ i,‘i 1 t ' Qu.‘rntug;OfYSol.\cor—&—
90 N Dolby —#&

AX € (1/a) AY N4 T mewreeo o]
( Controller Gain: 1/a)

70
60
50
40

30

o]
-
")

]
(14

[ =

o]
-
)

)

)
[

)
-
")

o
0

20

10

o 1 1 1 | 1
0.01 0.02 0.05 0.0625 0.125 0.25

a




Runtime Controller: Attempt#3

® Use Feedback Controller: adjust X based on observed error AY

® Need to assume monotonicity in XY relationship

e But X-Y relationship can remain time-varying

100

T T T
QuantumOfSolace —é&—

90 Dolby A

AX & (1/a) AY | BN

80 Torque
( Controller Gain: 1/a)

e Simplest: P controller

Lesson#3
Feedback Control works

Satisfaction Ratio

L S S . v .
poorly, unless « isin a * v
. 10 4
narrow range determined o
g.Ol 0.02 0.05 0.0625 0.125 0.25 0.5 2 10 20

by data-set a
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e Domain Assumptions help us design generic controller
#1. Monotonic X-Y

Makes rapid feedback-control feasible, dramatically simplifies learning
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Minimizes influence of frequent transients
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#3. Stable Region length >>\\\

Determines quantitative metrics and tests to adapt policy

Simplicity in Feedback Law: )
AX € (1/a) AY
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e Failure Metrics
e H, L
e nd*n+H*W/L, (0<d<1)

e Failure Detection
°n > {
with t = 1/(1-d) * 2d * 1.0

° Policy Adaptation
e a™W a*n/t

e Accumulative metrics for failure

Weighted to gradually forget old learning, at
rate d

Robustness against transients
Responsive to persistent Changed behavior

Constant state very low runtime overhead of

controller
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X — Search Window Size : {0 — 30,1 — 20,2 —> 15,3 > 10,4 —> 5,5 > 2,6 > 1,7 > 0}

Integral X: Easier for programmer to just Sample Search Window Size over sufficient range
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* Quality of Result: Gameplay Intelligence
e For Y°P = (.04 secs

* Adaptive: 24ms of Al/frame

e Best fixed X: 14ms of Al/frame
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® Application needs to be implemented as Task-Graphs

* With execution-time properties specified for nodes [Mejia-Alvarez et al. RTSS 2000]
® And, Utility functions for QoS provided [Block et al. ECRTS 2008]

* Application-specific techniques
e Rate-distortion control in H.264 encoder

® QoS control in MPEG2 decoder (easier than encoder due to video-control-sequence information)
[Roitzsch et al. RTSS’06] [Huang et al. MULTIMEDIA’07] [Wust et al. ECRTS’04]
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* Illustrated by: Web-cache QoS optimization [Lu et al. IWQoS 2002]

Adaptive Pole-placement controller-design, based on periodically re-estimating a 2"! order parametric

LTI model

Our work is an Adaptive Gain-Scheduling controller
® Adjust control-law directly to overcome observed failures

Controller is domain-specific rather than application-specific

® Based on broad domain-assumptions, rather than linear dynamical models of plant

® Semi- physical System-Iden tifica tion

Very effective, but Best-Effort:
® No guarantees on Safety, Robustness, Reachability
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Conclusion

* Our controller greatly simplifies frame-QoS control
® Programmers avoid having to model emergent behaviors
® Incorporate controller as a library

exceedingly light-weight: < 0.05% overhead

. Generality
* Any application that satisfies Domain Assumptions

Monotonic response, perceived frame-rate, Stable response periods >>W frames

e Graceful degradation when not

e No general—purpose alternatives available that work well for interactive

applications whose behavior is UNKNOWN, EMERGENT
and NON-ANALYZABLE

e Future Work
* Multiple X, Multiple prioritized Y, Explicit Q
e Domain Observations ”Adaptive Control + Least—Squares Function Estimation

® But, much more compute intensive controller
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Thank you!

® Questions’
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Don’t Real-Time Methods Solve This Already?

Games, Multimedia, /\
Interactive Viz | T 12> I35
— Implement as
a Real-Time App
Implement with @ @

High-Productivity, Real-Time Task-Graph
Large Scale - Application decomposed
\/ Programming flows into Tasks and
C. C++, Java: Monolithic A Precedence Constraints
- 100Ks to Millions of LoC - Responsiveness

guaranteed by Real-time
semantics (hard or
probabilistic)

- No analyzable structure for
responsiveness and scaling

- Responsiveness and Quality

entirely emergent attributes

(currently tuning this is an art) Need a new bag of tricks to Scale

Semantics in Monolithic Applications



Runtime Controller

[Yobi - &, Yobi + 5] :

desired objective
window for Y

Adaptive Policy

Is o performing as well as possible?

Policy Failure : a"% < adjust( a)

> P—controller

AX € (1/a) AY

Application
X
Y & App(X)
(unknown)
feedback Y
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