Using Computing Resources

/Single-core Resource (Multi-core Resource Many-core Resource Q)

* Task and data parallelism not always applicable

* Frequency scaling * Task and data parallelism

» Hard but still tractable

« Difficult to program
* No effort to use "more" (faster)

Resources are wasted

Think Different: How can we usefully utilize resources differently and what for

Intuition: Randomized algorithms

* An algorithm making random choices for a fixed input can lead to different
completion times

Uniform [0;100]

[

Idea: Launch multiple instances

« Launch n parallel independent and isolated instances of the
kernel algorithm on the same input

« Fastest among n is faster than average with high probability

« Use of parallel resources to speed-up hitherto sequential
kernels

« Potential for super-linear speedup for certain distributions

« Applicable to other algorithms using diversity

n (# cores)

Efficient parallelism

* More instances => more speedup Definition of efficiency

o S,: Speedup obtained with 7 i

« [s there an "efficient" number to launch? . 5

)) o e: Parallel efficiency defined as °

* Two approaCheSZ leamlng or CU11mg e ¢ =l isalinear speedup and e > 1 is super-
linear

Learning approach

* Monitor past executions and
predict Ey to Ey

Culling approach

- « Launch as many as possible

* Monitor behavior and cull worst performing
+ Assume stable behavior « Indirectly affects efficiency
« Calculate n based on computed efficiency

(~Input Stability Condition

PDF [A (I,)] ~) ; .
PDFA(L; 1) A(;)] Status Monitor
« Domain-specific
progress report

Ij—1 '"Ij-M
Pr

ogram e When does it hold?

® Runtime estimation required | |/ Triggers culling

« Holds statically for inputs of the same "size"

« Holds for sufficiently slow variations

MultBody Car (freq 1) Car fr0q 10) Car siz0) Car szo 10) Car sz 20
maks

o i
800 200 125 10203 ssa7562156a7552.159
P

WalkSAT benchmark

WalkSAT solves SAT problems using
randomness. The benchmarks used are from the
DIMACS suite

Motion Planning (MSL) benchmark

MSL implements rapidly-exploring random
trees. The Car benchmark is a path planning
hand-crafted benchmark

Intuition: Real-time systems

* Algorithms whose execution time, multi-core resource requirements and
sophistication are parametric can be scaled to maximize sophistication within
responsiveness constraints

Game-Frames
oy e

=t —

Slack: wasted
opportunity

Application with
variable semantics

Missed deadline:
responsiveness affected

What about RT methods? Algorithm scaling

« Provides additional mechanism to utilizing more
cores

* Requires applications to be decomposed
into tasks and precedence constraints.
Responsiveness is guaranteed by RT

« Two types of scaling: with resources and with data
semantics (hard or probabilistic)

ISIECS @2 @

IAlooM:unmll IMgoMcemphx\ I RgoA] I oA
N Ty s

« For games and multimedia:

- Implemented with high-productivity
programming flows (C/C++ with 100K+
LOC)

- No analyzable responsiveness structure Semantics scaling for monolithic

applications requires a new bag of
tricks

- Responsiveness is an emergent attribute
(tuning is an art)

SRT system architecture

Typical Game Engine responsiveness objective

Achieve 25 to 40 fps,
frame “Game” with probability > 90%
run_frame()

The SRT Runtime: > ;
resp. objectiye: choices affect

* Monitors the frames Consume frame-times & objectives

L < 40% of “Gfme”
* Learns application- frame frame
wide average frame
structure @

Reinforcement learning: infers complex model-objective relationships (slow)

« Chooses between
user-codes in model

Feedback control: adjusts model choices to meet objectives (fast reaction)

Enabling Realism

/N-version creates slack by
speeding up computations

Computation

>
g%
133

SRT exploits it by achieving
more within the ressource
constraints

-

Per-Frame Time
I
N Faster

Fewer Cores More, Faster Cores

‘Realism... Scope

« Each framework can apply
separately but more powerful
together

+ Sophistication in modeling

- Example: Render/animate as detailed as possible
O IR IS « Gaming, multimedia applications
+ Example: Frames-per-second, user-input response time

« Immersive applications
Enables richer applications

* More immersiveness in games

References

« R. Cledat, T. Kumar, J. Sreeram, S. Pande:
Opportunistic Computing: A New Paradigm for
Scalable Realism on Many-Cores, HotPar 2009

* More adaptive media processing

