
SRT: Scaling semantics to available resources
Intuition: Randomized algorithms
• An algorithm making random choices for a fixed input can lead to different
completion times

Intuition: Real-time systems
• Algorithms whose execution time, multi-core resource requirements and
sophistication are parametric can be scaled to maximize sophistication within
responsiveness constraints

Efficient parallelism SRT system architecture

Enabling Realism

Results: Low-overhead runtime provides good speedup

Application with
variable semantics

Slack: wasted
opportunity

Missed deadline:
responsiveness affected

Learning approach
• Monitor past executions and
predict E1 to En
• Assume stable behavior

• Calculate n based on computed efficiency

CDFn (t) =
1− (1−CDF1 (t))n

Using Computing Resources

Think Different: How can we usefully utilize resources differently and what for

Opportunistic Computing: A New Paradigm for
Scalable Realism on Many-cores

Romain Cledat and Tushar Kumar
Georgia Institute of Technology
Advised by Professor Santosh Pande

Many-core Resource
• Difficult to program
• Task and data parallelism not always applicable
Resources are wasted

N-version: Speeding up certain sequential computation

Multi-core Resource
• Task and data parallelism
• Hard but still tractable

Single-core Resource
• Frequency scaling
• No effort to use "more" (faster)

• More instances => more speedup
• Is there an "efficient" number to launch?
• Two approaches: learning or culling

Definition of efficiency
• Sn: Speedup obtained with n instances

• e: Parallel efficiency defined as Sn
n

• e = 1 is a linear speedup and e > 1 is super-
linear

Stability Condition

PDF [A(I j)]≈
PDF [A(I j−1) . . .A(I j−M)]

• When does it hold?

• Runtime estimation required

Culling approach
• Launch as many as possible

• Monitor behavior and cull worst performing

• Indirectly affects efficiency

Algorithm scaling
• Provides additional mechanism to utilizing more
cores

• Two types of scaling: with resources and with data

Reinforcement learning: infers complex model-objective relationships (slow)

Feedback control: adjusts model choices to meet objectives (fast reaction)

The SRT Runtime:
• Monitors the frames

• Learns application-
wide average frame
structure

• Chooses between
user-codes in model

• Holds statically for inputs of the same "size"

• Holds for sufficiently slow variations

Input: Way t ways[] to evaluate for culling
Input: int n number of ways
Output: Way t toCull[] to cull
Data: Way t classes[][]
classes[0]← (ways[0] . . .ways[n]);
newClass← 1;
lastClass← 0;
while newClass do

newClass← 0;
foreach way w1 in classes[lastClass] do

foreach way w2 in classes[lastClass]
ordered after w1 do

if not isSimilar(w1, w2) then

if newClass == 0 then

lastClass← lastClass+1;
newClass← 1;

end

append(classes[lastClass], w2);
end

end

end

end

worstClass←pickworst(classes) ; /* Empty if
only one class */

Status Monitor
• Domain-specific
progress report

• Triggers culling

Realism...
• Sophistication in modeling

· Example: Render/animate as detailed as possible

• Responsiveness

· Example: Frames-per-second, user-input response time

Enables richer applications
• More immersiveness in games

• More adaptive media processing

N-version creates slack by
speeding up computations

SRT exploits it by achieving
more within the ressource
constraints

 1

 2

 3

 4

 5

 6

 7

 8

 9

f400 f800 f1600 f3200 g125 ii32d3 ssa7552-158ssa7552-159

S
p
e
e
d
u
p

Benchmarks

Number of threads
orig

1
2
4
6
8

8 (culling)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21

MultiBody Car (freq 1) Car (freq 10) Car (size 4) Car (size 10) Car (size 20)

S
p
e
e
d
u
p

Benchmarks

Number of threads
orig

1
2
4
6
8

8 (learning)

WalkSAT benchmark
WalkSAT solves SAT problems using
randomness. The benchmarks used are from the
DIMACS suite

Motion Planning (MSL) benchmark
MSL implements rapidly-exploring random
trees. The Car benchmark is a path planning
hand-crafted benchmark

Idea: Launch multiple instances
• Launch n parallel independent and isolated instances of the
kernel algorithm on the same input

• Fastest among n is faster than average with high probability

• Use of parallel resources to speed-up hitherto sequential
kernels

• Potential for super-linear speedup for certain distributions

• Applicable to other algorithms using diversity

References
• R. Cledat, T. Kumar, J. Sreeram, S. Pande:
Opportunistic Computing: A New Paradigm for
Scalable Realism on Many-Cores, HotPar 2009

What about RT methods?
• Requires applications to be decomposed
into tasks and precedence constraints.
Responsiveness is guaranteed by RT
semantics (hard or probabilistic)

• For games and multimedia:

· Implemented with high-productivity
programming flows (C/C++ with 100K+
LOC)

· No analyzable responsiveness structure

· Responsiveness is an emergent attribute
(tuning is an art)

Semantics scaling for monolithic
applications requires a new bag of

tricks

Scope
• Each framework can apply
separately but more powerful
together

• Gaming, multimedia applications

• Immersive applications


