
Results: Speedups and QoR improvements with low overhead

Think Different: How can parallel resources be used to improve sequential performance?

Sequential bottleneckUtilizing parallel resources

Intuition: Randomized algorithms

• An algorithm making random choices for a fixed input can lead to different

completion times

Efficient parallelism

Motivations

• How to occupy parallel resources?

• How to do it efficiently?

• How to overcome the sequential bottleneck?

Current and future work

Speedup Results

QoR improvements Overhead Measurements

Learning approach for randomized
algorithms

• Monitor past executions and

predict E1 to En

• Assume stable behavior

• Calculate n based on computed efficiency

Efficiently Speeding up Sequential Computations

with N-way parallelism
Romain Cledat, Tushar Kumar and Santosh Pande
College of Computing, Georgia Institute of Technology

Many-core Resource

• Difficult to program

• Task/data parallelism not always

applicable

Single-core Resource

• Frequency scaling

• No effort to use "more" (faster)

Idea: Launch multiple instances

• Launch n parallel independent and isolated instances of the

kernel algorithm on the same input

• Fastest among n is faster than average with high probability

• Use of parallel resources to speed-up hitherto sequential

kernels

• Potential for super-linear speedup for certain distributions

• Applicable to other algorithms using diversity

• More instances => more speedup

• Is there an "efficient" number to launch?

• Two approaches: learning or culling

Definition of efficiency

Culling approach

• Launch as many as possible

• Monitor behavior and cull worst performing

• Indirectly affects efficiency

• Holds statically for inputs of the same "size"

• Holds for sufficiently slow variations

Status Monitor

• Domain-specific

progress report

• Triggers culling

WalkSAT benchmark

WalkSAT solves SAT problems using

randomness. The benchmarks used are from the

DIMACS suite

Motion Planning (MSL) benchmark

MSL implements rapidly-exploring random

trees. The Car benchmark is a path planning

hand-crafted benchmark

References
• R. Cledat, T. Kumar, J. Sreeram, S. Pande: Opportunistic Computing: A New Paradigm for Scalable Realism on Many-Cores, HotPar 2009

• R. Cledat, S. Pande: Energy Efficiency via the N-Way model, PESPMA 2010

Limits utilization

Limits speedup (Amdahl's law)

Resources are wasted

+ =>

TSP benchmark

"Fitness" of the population after 2500

generations for benchmarks from TSPLIB

(smaller is better)

Runtime Overhead

Principal overhead for the n-way runtime for 1, 8

and 16 threads. "Thread info" represents access

to the thread's characteristics and "thread

private" corresponds to a fetching of TLS

information. All other runtime functions

represented less than 1% of total overhead.

Evaluating algorithmic diversity

• Define and quantify diversity between algorithms

(data access patterns, timing information, ...)

• Derive a fingerprint for algorithms

• Dynamically learn fingerprints for each way to

maximize diversity expressed

Exploiting hardware diversity

• Current work exploits algorithmic diversity but

hardware also exposes diversity

• Heterogeneous chips, accelerator-based systems

are all examples

• N-way can be used to dynamically match the

algorithm, the data and the hardware

Traditional parallelism versus N-way

• Orthogonal approaches that can be used simultaneously

Parallelism as a source of
diversity

• Many ways to parallelize an algorithm,
introducing diversity in parallelization

• Simple examples: grain-size, algorithm break-

up boundaries, ...

• N-way can be used to simultaneously evaluate

different parallelization options

• Determining correct 'n' becomes even more

crucial

Side by side

• Evaluate whether diversity or traditional break-

up provides better speedup

• Determine best scheduling and balance

between n-way and parallelism

• Current learning approaches estimate N-

way's efficiency

• Efficiency can also be learned/estimated for

traditional parallelism

Extension for heuristics

• Monitor past executions and predict E[H1] to E[Hn]

• Estimate execution time of non-completing heuristics

• Non-launched Hi estimated at d.E[Hi] (d<1)

• Launched estimated at c.E[Hw] (c>1)

• Greedily pick fastest heuristics and compute

efficiency

Conclusion

• N-way is easy

• Determining n is hard

• Too small n does not provide all potential speedup

• Too big n wastes resources and can harm speedup

• Learning approach estimates best n while culling

further limits waste

y


