Motivations

Utilizing parallel resources

/Single-core Resource

Sequential bottleneck
Limits speedup (Amdahl's law)

* Frequency scaling

3

Maximum speedup

* No effort to use "more" (faster)

°

» How to occupy parallel resources?

(Many-core Resource Limits utilization

Parallelizable component (%)

» How to do it efficiently?

» How to overcome the sequential bottleneck?

100

* Difficult to program

» Task/data parallelism not always

Utilization (in %)

J/

/

applicable

Resources are wasted

Number of cores

o

Think Different: How can parallel resources be used to improve sequential performance?

Intuition: Randomized algorithms

* An algorithm making random choices for a fixed input can lead to different

completion times

Bimodal (100;2000)
Es

Uniform [05100]

/ldea: Launch multiple instances

« Launch n parallel independent and isolated instances of the
kernel algorithm on the same input

« Fastest among n is faster than average with high probability

« Use of parallel resources to speed-up hitherto sequential
kernels

« Potential for super-linear speedup for certain distributions

_* Applicable to other algorithms using diversity

n (# cores)

Efficient parallelism

/Definition of efficiency
® S,: Speedup obtained with n instances

» More instances => more speedup

* Is there an "efficient" number to launch?) P
o ¢ Parallel efficiency defined as 3

» Two approaches: learning or culling
linear

e ¢ = lisalinear speedup and e > 1 is super-

(Culling approach

« Launch as many as possible

(Learning approach for randomized)
algorithms

* Monitor past executions and
predict Ey to Ejy

* Monitor behavior and cull worst performing

« Indirectly affects efficiency
« Assume stable behavior

Input: Way.t ways] o evaluate for culling
Input int 7 number of ways

Output: Way. 1 roCull] o cull

Data: Way.t classes(]]|

classes(0] « (ways(0)...waysin):

« Calculate n based on computed efficiency

g\ln put
| . Stability Condition
‘ -M
e

foreach way w, in classeslasiClass] do

(Status Monitor)

+ Domain-specific ondered after v, do
progress report ot esintiac

PDF[A(I})] ~
PDF[A(1-1)... A (1))

)
Program
7

nenClass — 1

« Triggers culling
« Holds statically for inputs of the same "size" \

« Holds for sufficiently slow variations

lassesflasiClass), ws):

(Speedup Results

(Extension for heuristics (Conclusion

* Monitor past executions and predict E[H|] to E[H,] * N-way is easy

« Estimate execution time of non-completing heuristics| | |+ Determining # is hard

« Non-launched Hj estimated at d.E[H;] (d<1)
* Launched estimated at ¢.E[Hy,] (c>1)

« Greedily pick fastest heuristics and compute

« Too small n does not provide all potential speedup
« Too big n wastes resources and can harm speedup

« Learning approach estimates best # while culling

efficiency

further limits waste

Results: Speedups and QoR improvements with low overhead

Benchmans

WalkSAT benchmark Motion Planning (MSL) benchmark

WalkSAT solves SAT problems using
randomness. The benchmarks used are from the
DIMACS suite

MSL implements rapidly-exploring random
trees. The Car benchmark is a path planning
hand-crafted benchmark

(Overhead Measurements

9% total overhead | Call time (1)
18 [16 18] 16
Access (RO) | 53.78 | 48.49 [49.72 | 12 [13|26
Access (RW) |2 3169|2111 3] 21
Thead info | 14.95 | 13.92 | 18.53 5
Thread privaic | 585 | 445 | 6.15 57

Runtime Overhead

‘QoR improvements

Threads | kroB150 rati7s Function
Original | 44.7 315
18 39 315
s ¥ 203
116 z 25. 287
391 5 277
354 X X 2.7
24 (49) 287 (41)
5.1 (35) 2.1 (3.8)
401 (8.3) | 7(7.0) .9 (7.3) [28.9 (
16 (1+) | 43.7 (8.1) | 7.2 (7.0) 203 (6.6)

TSP benchmark
"Fitness" of the population after 2500

generations for benchmarks from TSPLIB
(smaller is better)

Principal overhead for the n-way runtime for 1, 8
and 16 threads. "Thread info" represents access
to the thread's characteristics and "thread
private" corresponds to a fetching of TLS
information. All other runtime functions
represented less than 1% of total overhead.

Current and future work

‘Exploiting hardware diversity

« Current work exploits algorithmic diversity but
hardware also exposes diversity

(Evaluating algorithmic diversity

« Define and quantify diversity between algorithms
(data access patterns, timing information, ...)

« Heterogeneous chips, accelerator-based systems
are all examples

« Derive a fingerprint for algorithms

« Dynamically learn fingerprints for each way to
maximize diversity expressed « N-way can be used to dynamically match the

algorithm, the data and the hardware

(Traditional parallelism versus N-way
« Orthogonal approaches that can be used simultaneously
‘Side by side

« Evaluate whether diversity or traditional break-
up provides better speedup

(Parallelism as a source of
diversity

® Many ways to parallelize an algorithm,

introducing diversity in parallelization * Determine best scheduling and balance

between n-way and parallelism
« Simple examples: grain-size, algorithm break-

up boundaries, ... « Current learning approaches estimate N-

. way's efficiency
« N-way can be used to simultaneously evaluate

different parallelization options « Efficiency can also be learned/estimated for

o traditional parallelism
« Determining correct 'n' becomes even more
crucial

References
*R. Cledat, T. Kumar, J. Sreeram, S. Pande: Opportunistic Computing: A New Paradigm for Scalable Realism on Many-Cores, HotPar 2009

+ R. Cledat, S. Pande: Energy Efficiency via the N-Way model, PESPMA 2010

