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Abstract
With core counts as well as heterogeneity on the rise, the
sequential components of applications are becoming the
major bottleneck in performance scaling as predicted by
Amdahl’s law. We are therefore faced with the simul-
taneous problems of occupying an increasing number
of cores and improving sequential performance. In this
work, we specifically focus on improving the energy ef-
ficiency of sequential algorithms through the n-way pro-
gramming model.

In previous work, we introduced the n-way program-
ming model which seeks to exploit the algorithmic di-
versity present in certain computations in order to speed-
up or improve the quality-of-result. The core idea be-
hind n-way parallelism is to launch a number of in-
stances of a key computational step and benefit from ei-
ther the algorithmic diversity present in the algorithm or
the diversity in algorithms available to express the com-
putation.

In this paper, we propose to combine metrics measur-
ing the algorithmic progress of a computation with met-
rics measuring the energy expenditure to compute an ef-
ficiency metric. This metric can then be used to quickly
pick which instance of a n-way computation is the most
energy efficient and cull the inefficient ones.

The evaluation of our idea on sorting benchmarks
shows that our technique is promising.

1. Introduction
Today, chipmakers are utilizing the increased number
of transistors predicted by Moore’s law to increase the
number of cores, thereby increasing hardware paral-
lelism. While parallel parts of applications are able to
benefit from the increase in hardware parallelism, se-
quential portions are increasingly becoming a bottle-
neck as their performance will not improve with each
new generation of processors [5].

Furthermore, heterogeneity is also becoming preva-
lent in processor design. The Cell processor [3, 6] is a
prime example of a heterogeneous chips where many
leaner smaller cores (the SPUs) are used as accelerators

to a larger all-purpose processor (the PPU). GPUs are
also being cast on the same die as CPUs such as in Intel’s
Westmere processor [9] and AMD’s Fusion [1]. Simi-
larly, Intel’s Tolapai [8] integrates a network processor
with the main processing core. For sequential codes, het-
erogeneity due to asymmetric multicores is more valu-
able as GPUs are designed to deal with massively par-
allel codes. For a given sequential code, heterogeneity
therefore adds a choice of target but also complexity as
choosing the most appropriate target is difficult and the
subject of active research.

The increase in the number of cores makes it hard
for the programmer to fully utilize the resources avail-
able in an efficient manner as he must now execute code
on multiple parallel resources. This is particularly true
for applications that are mostly sequential. Therefore, an
important research question is how to make sequential
code benefit from this increase in parallel resources (ei-
ther homogeneous or heterogeneous). Previous work on
homogeneous resources has focused on utilizing helper
threads [24, 29] to assist a main sequential thread in
its execution (by prefetching data for example). Other
work in thread-level speculation [21] also exploits par-
allel homogeneous resources to speed-up a sequential
thread of execution. For heterogeneous platforms, work-
load characterization can be used [28] to determine stat-
ically which target would be the most appropriate.

In this work, we seek to show that additional paral-
lel resources, if they are unused, can be utilized to dy-
namically find the best match between the algorithm, the
input data and the processing resource where “best” is
defined as the most energy efficient.

Energy is indeed becoming a major concern from
high-end data-centers down to mobile devices. Data-
centers are trying to cut costs and mobile devices are
concerned with battery life. Energy is such a concern
that a separate list, Green 500, is used to rank super-
computers by their energy efficiency.



1.1 The matching problem
Finding the least energy consuming match between an
algorithm, the input data passed to it and the processing
resource it runs on is a recurring problem. Given a prob-
lem P and an input I , we argue that two dimensions can
be explored in order to determine the most energy effi-
cient combination:
• Hardware diversity: the same code may execute

more or less efficiently on different computing re-
sources. Differences in micro-architecture for example
could lead to different costs for pipeline stalls, differ-
ent branch misprediction rates, etc. Changes in cache
configuration will also lead to changes in the number of
accesses to main memory thereby increasing or decreas-
ing the overall energy cost of running the code. More
fundamentally, significant design differences, such as
those between the SPUs and the PPU in a Cell proces-
sor, or small and large cores in asymmetric multicores,
can lead to large differences in performance and energy
consumption.
• Algorithm diversity: for the same problem P , there

may be multiple ways of solving it. We refer to this as al-
gorithmic diversity and detail it in Section 2. Intuitively,
consider a randomized algorithm A used to solve the
problem P . Given the element of randomness in the al-
gorithm, its exact execution will differ from run to run
thereby, in effect, impacting the platform differently and
potentially using different amounts of energy.

1.2 The N-way model
In this paper, we will build on ideas introduced in [2] and
briefly present the n-way programming model which
allows a dynamic selection of which algorithm to run
where. The model therefore exploits both the hardware
diversity present in a platform as well as the algorithm
diversity. The goal is to provide the programmer with
a model allowing him to dynamically find the least en-
ergy consuming match of algorithm and processing re-
source for a given problem and input data. Note that our
model does not concern itself with the task of compil-
ing the code to run on heterogeneous platforms, rather
we envision our model on top of lower level program-
ming models such as OpenCL [11] which provide a uni-
fied programming language for heterogeneous platforms
such as CPUs, GPUs and other accelerator-like devices.

The core idea of the n-way programming model is to
exploit algorithmic and hardware diversity by simulta-
neously running in isolation multiple ways to solve the
same problem P (I). A monitoring runtime can then
quickly choose the “way” that will, overall, use the
smallest amount of energy, let it proceed and terminate
all others. Our model can therefore be qualified as “run

for a little while and choose”; it eliminates the need to
statically select a match between algorithm, input and
processing resource.

To do so, we introduce a measure, the algorithmic
energy efficiency which is loosely defined as the ratio
of the amount of progress the algorithm has made over
the energy expended to obtain that progress. Section 3
presents this measure in more detail gives more detail.

Note that our approach is counter-intuitive in the
sense that while all the ways are running in parallel,
we will actually be wasting energy as multiple ways
to solve the same problem will be simultaneously ex-
ecuted. However, we believe that if a decision can
be made early enough, overall energy savings will be
achieved, in particular if the diversity present is large.

1.3 Contributions
We make the following contributions in this paper:
• We recognize the existence of algorithmic diversity

in many important computational steps.
• We introduce an algorithmic energy efficiency met-

ric based on measuring algorithmic progress and perfor-
mance counters. We show how this metric can be used
to compare algorithms based on their energy efficiency.
• We show that algorithmic and hardware diversity

can be exploited through the n-way model, which we
present, to select the most energy efficient algorithm
thereby improving sequential code performance with the
help of multicore platforms.
• We demonstrate the feasibility of our idea with well-

known implementations of sorting algorithms showing
how we can effectively predict the most efficient imple-
mentation very quickly.
Section 2 reviews past uses of hardware diversity and
defines and illustrates algorithmic diversity. Section 3
describes the rationale for the algorithmic energy ef-
ficiency (AEE) measure we introduce and Section 4
shows how both diversity and the AEE measure can be
combined to reduce the energy consumption of sequen-
tial code. We present motivational results in Section 5
before reviewing related work in Section 6 and conclud-
ing in Section 7 with future work.

2. Diversity
In this Section, we review past uses of hardware diver-
sity and introduce the notion of algorithmic diversity.

2.1 Hardware diversity
In the past, when hardware diversity was only present
across machine (and not within the same one), archi-
tectures could be custom matched for a specific set of
algorithms; FPGAs and ASICs are extreme cases of this



where the architecture is optimally tuned for an algo-
rithm (for example to utilize the least amount of power).
This customization is also present, to a lesser extent,
in the general computing arena where the introduction
of vector-friendly SSE instructions improved the perfor-
mance and energy consumption of certain types of algo-
rithms. In all these cases, the architecture was statically
matched and optimized for specific algorithms.

More recently, work has been done to try to dynam-
ically match algorithms to specific computing resources
in heterogeneous systems. In [13], Kumar et al. shows
how processor power dissipation can be reduced in a
single-ISA heterogeneous system. They show how an
oracle scheduler could reduce power consumption sig-
nificantly. In [23], Snowdon et al. show how a pre-
characterized model can be used to predict, at runtime,
the energy consumption of a piece of code. They use
this information to dynamically scale the frequency of
the processor to provide the requested performance to
energy trade-off. Luk et al, in [16], describe a system
to dynamically map tasks to either the GPU or the CPU
based on how well they will perform on each. They use
a learning method based on training data as well as past
executions.

All of this previous work shows the importance of
finding the best match between architecture and algo-
rithm. It also shows that this is not straightforward and
most of the work relies on some static or learned knowl-
edge about the applications running. As hardware diver-
sity becomes more common and applications able to ex-
ploit this diversity more wide-spread, this approach will
be difficult to continue and a more dynamic approach
may be required. Furthermore, for algorithms that are
heavily input data dependent, the approaches in previous
works will not be sufficient as they fail to consider the
input data to the code in their algorithms. In this work,
we propose an alternative solution to matching the hard-
ware to the algorithm by evaluating algorithms on mul-
tiple cores simultaneously for a short period of time and
making a rapid decision about the one that is the best.

2.2 Algorithmic diversity
We define a diverse problem as follows:

Definition Let P be a problem. P is called a diverse
problem if P can be executed in multiple “ways” for a
given input I where each way will produce an solution
to P .

The different ways may solve P slightly differently,
some operating faster than others or with a higher qual-
ity of result. Furthermore, each way will utilize more
or less energy depending on its impact on the hard-
ware (number of branch mispredictions, cache misses,

or other measurable event). Note that the granularity of
P is irrelevant in the definition. P could be an entire ap-
plication or a small basic building-block kernel such as
a “sort” problem. Finding diversity at the granularity of
a kernel will allow larger problems that depend on the
kernel to also benefit from the diversity present in the
kernel.

Unpredictable effects of diversity To focus solely on
algorithmic diversity, we consider that all ways are run
on the same type of computing resource. Suppose W1

through Wn are all statically known ways to solve P .
Ideally, an oracle would be available to determine, for a
given input I , which way will use the least amount of
energy and the programmer could elect to run only that
way. However, in the real world, given the high data-
dependence of most algorithms, such an oracle would
most likely end up being just as computationally inten-
sive as the ways themselves and therefore serve no pur-
pose.

The effects of diversity are therefore potentially
highly unpredictable. In other words, dynamically, when
the input to P is known, it is not always possible to de-
termine which of the different ways will use the smallest
amount of energy.

2.2.1 Prevalence of diversity
Algorithmic diversity can potentially be present in three
different forms: i) across multiple distinct algorithms to
solve the same problem, ii) within an algorithm that can
be parametrized, and iii) with an algorithm that exploits
randomness.

Compilers may also introduce a degree of diversity
by compiling the same code with different compiler op-
tions or even with different compilers which may per-
form different types of optimizations. The effect of the
different flags does not always have a predictable effect
[18] however, their relative behavior may not vary dy-
namically with input data. For example, a code com-
piled with the “-O2” flag will most likely always exe-
cute faster than one executed with the “-O0” flag. The
unpredictable effect of diversity is therefore potentially
lost with compiler-induced diversity.

Diversity across algorithms For many real-world prob-
lems, finding an exact solution in a reasonable amount
of time is impossible. NP-hard and NP-complete prob-
lems are prime examples of this but even problems for
which a polynomial-time algorithm exists may be diffi-
cult to efficiently solve in practice due to the problem’s
large size. For such problems and others, the user is
more interested in an acceptable solution rather than
a specific one or all the solutions. For example, when
finding a path between two nodes in a graph, any path is



an acceptable solution although some may be preferred
over others (shorter paths for example). Acceptance of
a wider set of solutions enables the use of a variety of
algorithms to solve the same problem. Approximation
algorithms [27] and heuristic algorithms have been uti-
lized for just such a purpose.

Diversity in parametrized algorithms Apart from dis-
tinct algorithms, even if only a single algorithm exists to
solve P , diversity may still be present if the algorithm
can be parametrized. For example, the CPLEX solver
includes over 100 parameters [26] that can be used to
tune the effects of the algorithm. Each pair (A,Param)
can be considered to be a distinct algorithm and we can
therefore map this case to the previous one.

Diversity due to randomness Randomized algorithms
[17, 19] utilize a degree of randomness as part of their
logic. A randomized algorithm seeks to achieve good
performance on the average case. Due to its random
nature however, its exact behavior on a given hardware
is impossible to predict. For example, memory access
patterns may be different from one run of the algorithm
to the next thereby impacting the number of misses in
the cache and the overall energy consumption.

Therefore, similarly to parametrized algorithms, ran-
domized algorithms also inherently contain diversity.
One can view the random seed supplied to the algorithm
as a form of implicit parameter passed to the algorithm.
The random choices made by these algorithms confer to
them a diversity in exact execution path. However, the
parameter space is innumerable (for all practical pur-
poses).

2.2.2 Hardware diversity: a multiplier effect
For a given problem P with multiple ways to execute
W1 to Wn, hardware diversity causes a multiplicative
effect in the number of possibilities to execute P as each
way can potentially be executed on different cores. In-
stead of having just W1 to Wn as ways to execute P , we
now have the pairs (W1, C1), (W1, C2), . . . , (W1, Cm),
. . . , (Wn, Cm) where C1 to Cm are the different cores
available on the platform (“smaller” cores, etc.).

3. Algorithmic energy efficiency
In Section 2, we demonstrated how for a given problem
P on input I , different ways (W1, C1) to (Wn, Cm)
could exist to solve it and that it is generally difficult to
statically determine which of the ways would consume
the smallest amount of energy to solve P for the input
I . Trivially, we could of course run each (Wi, Cj) and
measure its total energy consumption after it terminates.
However, for our purposes, we require a solution that is
online and very fast.

Measuring only the energy consumed by (Wi, Cj)
is not enough because even though (Wi, Cj) may be
consuming very little energy, it may do so for a very
long time, thereby driving up its total energy consump-
tion. We instead propose to measure i) an algorithmic
property (progress) and ii) a hardware impact measure
(here energy). The combination of the two allows us to
define an algorithmic energy efficiency which measures
how much algorithmic progress the way makes for the
amount of energy expended.

3.1 Required measures
We define the algorithmic energy efficiency eff as eff =
prog(A)
E(A) where prog is a measure of progress and E a

measure of energy and we describe both of these terms
in the following sections.

3.1.1 Algorithmic progress
We define algorithmic progress as the amount of work
that has been done towards solving the problem. For ex-
ample, in a sorting algorithm, progress could be mea-
sured as the number of inversions that have been re-
moved by the algorithm (an inversion exists between
any two elements that are out of order with respect to
the sorted order) or as the number of elements “moved”.
Note that we define progress in terms of the problem to
be solved, not in terms of low-level operations used by
the algorithm. This is crucial as it allows different algo-
rithms implementing the same problem to be compared.

Problems where greedy constructive algorithms are
used are very good examples of problems where it is
easy to define a notion of progress as both the current
amount of work done and the final amount required to
solve the problem are well defined.

Many other problems (in particular optimization
problems) also work by finding partial solutions which
are subsets of the final solution. Problems solved using
dynamic programming, incremental algorithms (such
as Dijkstra’s single source, single destination shortest
path algorithm) are examples of this. For such cases, the
progress can be quantified in terms of the size of the
partial solution found.

Progress is much harder to define for other problems
where algorithms such as back-tracking are used as it
is not clear exactly what constitutes progress (since the
algorithm may back-track if it comes to a dead-end).
In other words, even if the algorithm is “progressing”,
it may have to wipe-out some of this progress making
the comparison of progress metrics unreliable. However,
even in those situations, a certain notion of progress
can be defined. For example, consider the traditional
branch-and-bound SAT solver. While progress cannot
be defined as the number of clauses that are satisfied



(as they may become unsatisfied in the future), it can be
defined as the amount of solution-space that has been
pruned. This does not completely solve the issue as the
amount of progress to be made to solve the problem is
also unclear. Considering again the SAT solver problem,
an algorithm that has explored 90% of the space is
indeed more likely to find a solution than one that only
explored 5% but there is no guarantee as the second
algorithm may get “lucky” and find a satisfying solution
without needing to explore the entire space. The rate of
progress can however still be compared and this more
approximate measure can also be used as a substitute
for an exact progress measurement.

Formal definition of progress Formally, we define a
progress function prog (A) on an algorithm A as:
• A non-decreasing monotonic function
• If prog (A1) > prog (A2) then A1 has made more

progress than A2 towards finding the solution. If the
algorithm is greedy, it means that A1 is closer to finding
the solution than A2

This definition therefore allows different algorithms
solving the same problem to be compared. The mono-
tonicity condition is important to allow progress metrics
to be reliably compared and the second condition en-
sures that progress metrics between two algorithms are
comparable.

General notion of progress In general, the exact na-
ture of progress is very domain dependent and only a
domain expert will be able to define such a measure. The
monotonicity requirement that we impose makes find-
ing a suitable measure all the more difficult. However,
we believe that most important problems allow a notion
of progress to be defined:
• Constructive problems: problems which require

the construction of a solution have a natural monotonic
progress metric.
• Streaming problems: problems where data has to

be processed in sequence (such as media encoders and
decoders) also have a natural monotonic progress met-
ric.
• Search-based problems: problems which explore

a search space to reach a solution have to eliminate
portions of the space and the amount of space eliminated
constitutes a monotonic progress metric.
The examples above are not exhaustive but show that
across a wide range of domains, a notion of progress
can be defined.

Measuring progress in practice In practice, progress
can be measured by periodically updating a data-structure
that can be used to compute progress. In most cases, the
data-structure may consist of a single counter (such as

the number of elements correctly placed in a sort). We
provide support for such data-structures in our n-way
framework described in Section 4.

3.1.2 Energy metric
Now that we have described how to measure progress,
we describe how to measure, in an online manner, the
energy expended by an algorithm. Although the only
precise measurement is through a watt-meter and a stop-
watch, it is possible to approximate the value of the en-
ergy consumed for a computation through the use of
the performance monitoring counters (PMC). Indeed,
the power a chip utilizes is dependent on the events it
has to deal with. For example, a last-level cache miss
requires more power to service as the data needs to be
fetched from memory. Similarly, a branch misprediction
requires more power as the pipeline needs to be flushed
and restarted.

In [22], Singh et al. describe a methodology that can
be used to construct a formula relating power consump-
tion to readings from PMCs. The methodology relies
on measuring the actual power consumed with a watt-
meter as well as the evolution of the PMCs for a series
of micro-kernels and establishing correlations between
them. The method extracts the most significant (in terms
of their impact on power consumption) PMCs and quan-
tifies their contribution. Although the paper computes
this formula for the Intel Q6600 chip, we believe the
methodology is general enough to be applied to any chip
that exposes performance counters to the user. CPUs and
GPUs both fall in this category. Note that the exact way
to measure power is not the main point of this paper;
it is sufficient that there exist approximate ways to es-
timate power in real-time with PMCs. The total energy
consumed can then be estimated by multiplying the es-
timated instantaneous power consumed by the interval
over which it was measured. If the measurement inter-
vals are small enough, we can consider the power used
to be constant over the interval.

3.2 Putting it all together
By simultaneously measuring algorithmic progress and
estimating energy, we can estimate a cumulative algo-
rithmic energy efficiency for the algorithm which is the
ratio of the total progress over the total energy expended.
The AEE measures both the diversity due to algorithms,
which translates in particular in the progress made, as
well as the diversity due to hardware, which translates in
different energy being consumed. As the different ways
are concurrently running on the different cores (homo-
geneous or heterogeneous), a runtime can periodically
compare the efficiency for each way and, once it be-
comes clear which one will overall use the least amount



of energy, the runtime can terminate all other ways and
solve the problem solely with the selected way on the
selected core.

3.2.1 Non-uniform energy efficiency
A crucial issue with our technique is how to determine
when it is clear that a particular way will have a lower
overall energy use than the other ways. This determina-
tion has to be made early enough to actually allow over-
all energy saving but late enough to make an accurate
determination. Indeed, the energy efficiency measure is
not guaranteed to be uniform as some algorithms will do
a lot of preparatory work up front (thereby having a low
energy efficiency at the start) to enable them to make
more rapid progress later on (thereby having a very high
energy efficiency at the end). Since various algorithms
may not exhibit the same behavior in terms of energy
efficiency phases, it is difficult to accurately say with
certainty when a particular way is going to overall use
the least amount of energy. We are still investigating this
problem and propose several ideas in Section 7.

3.2.2 Accurate accounting
Note that since multiple ways are going to be running
in parallel we need to i) attribute the PMC counts to the
correct way and ii) account for the fact that the ways
will potentially interfere with each other (cache sharing
for example). The first point is simplified by the fact that
each way only runs on one resource (core) and does not
share it with other ways. If each core has its own PMCs,
the counters can be attributed to the correct way.

The second point is relevant only for cores that share
a common resource (for example a last-level cache in to-
day’s multicores). It is difficult to compensate for as it is
hard to efficiently and at runtime measure the interfer-
ence between ways. However, our system does not re-
quire a precise measurement of power but rather it sim-
ply requires that the measurements be comparable. This
assumption is not broken even if the ways interfere with
each other.

4. N-way programming model
We introduced the n-way model in [2] and give here
the operational details required to exploit algorithmic
and hardware diversity to dynamically select which al-
gorithm to run on which core. The focus of this paper is
not on the description of the n-way model and we there-
fore give a brief overview of the model here.

4.1 The n-way model
The key idea of the n-way model is to utilize the idle
cores to execute in isolation and in parallel the different
ways of a given diverse problem P . Consider the sample

program illustrated in Figure 1(a). A, B and C are three
sequential computations. In this example B exhibits di-
versity. Traditionally, A will execute followed by B fol-
lowed by C. In our model, A will execute followed by
the ways B1 to B4, all executing in isolation and in par-
allel followed by a selection of one of the ways (let us
say B2), followed by C’s execution. As far as C is con-
cerned, only B2 executed. This is illustrated in Figure
1(b). Note that the selection of B2 can happen at any
point during the execution of B (ie: not necessarily after
B2 finished executing). The n-way model guarantees se-
mantic equivalence between the two executions chiefly
due to the isolation guarantee.

(a) (b)

Figure 1. Sequential and n-way flow for a simple pro-
gram

In our previous work, we showed how the n-way
model could be used to exploit algorithmic diversity to
speed-up or otherwise improve the quality of result of a
computation. In this work, our goal is to select the way
that consumes the least amount of energy. This selection
will most likely translate into an algorithm that is also
fast as it will be subject to few architectural bottlenecks
which cause energy consumption to increase. An impor-
tant point to note is that n-way seeks to utilize idle cores
and will therefore not over-subscribe them. Therefore,
there will be, at most, one way running per core.

To successfully exploit diversity to select the way
that consumes the least amount of energy, the model
supports:
• Way isolation: isolation is a key condition to seman-

tic equivalence between both the n-way execution and a
sequential execution of one of the ways.
• Progress monitor: each way must report on its

progress and we introduce progress monitors as the
mechanism by which a runtime can monitor in a non-
intrusive manner the progress of the ways.
• Dynamic choice and culling: when it is clear which

way will use the least amount of energy, that way is
selected and all other ways are terminated.

Isolation Isolation is mainly required to ensure that
data is not accessed in a conflicting manner by two



ways. In heterogeneous environments where OpenCL
like languages are used, data must be explicitly pack-
aged with the tasks which makes the identification,
wrapping and duplication for each way of such data
trivial to implement.

However, for programs written in regular C/C++,
variables must be manually (or through a compiler)
identified and wrapped. Our current implementation
makes use of versioned data-structures to enable iso-
lation between ways.

Isolation is crucial in providing semantic equivalence
between the different ways. However, it is not the only
element and certain restrictions on the ways must be
placed. In particular, the ways cannot perform any non-
sandboxed action (such as interfacing with a network).
This ensures that the ways can be terminated at any time
without any lasting effect on the application.

Progress monitors Our model relies on a runtime to
periodically monitor the progress of the different ways.
When each way launches, it is passed a private copy of
a progress monitor which encapsulates a user-defined
progress data-structure. As stated earlier, this can be
as simple as a counter. Throughout its execution, the
way accesses the progress data-structure through the
progress monitor and updates it in a way to indicate
its progress. To limit overheads, our system thus relies
on the good behavior of the ways to periodically update
their progress.

Dynamic choice and culling When the runtime deter-
mines that it has collected enough progress information
(as well as PMCs) to be able to determine with a high
level of certainty the way that will consume the least
amount of energy, it will terminate all other ways and
leave the selected way to proceed uninterrupted. Termi-
nation of the different ways will occur when they next
try to update their progress monitor. A terminated way
will free up the core it is occupying and given the isola-
tion guarantee, this will have no impact on the continu-
ation of the program.

4.2 N-way parallelism
An interesting aspect of the n-way model is that it allows
a different type of parallelization of sequential codes. In-
stead of exploiting data or task parallelism in a section
of code, n-way parallelism exploits algorithmic diversity
as its source of parallelism. A programmer can therefore
easily take a library of different implementations solv-
ing the same problem (for example different sort algo-
rithms, or different SAT solving algorithms) and merge
them into a n-way implementation that will be parallel.

Concretely, suppose that 2 different implementations
for sorting are available quick sort and merge sort,

each taking an array A as argument and returning
the sorted array in place. Conceptually, the n-way
nway sort will look like this:
n w a y s o r t ( i n t∗ A) {

r e g i s t e r w a y ( q u i c k s o r t ) ;
r e g i s t e r w a y ( m e r g e s o r t ) ;

l a u n c h w a y s (A, l o w e s t e n e r g y ) ;
}

The different implementation possibilities are made
known to the runtime through the register way API
and the launch ways API launches in isolation and in
parallel the various ways picking the one that meets
the programmer specified goal (here, using the lowest
amount of energy).

5. Experimental validation
To validate the feasibility of our idea we used different
sorting algorithms. The n-way framework can currently
monitor the progress metric in an algorithm through the
use of the progress monitors described in Section 4 and
the results below motivate the utility of adding energy
monitoring as well.

Note that we utilized sorting algorithms as the diver-
sity present in sorting is well-known [14] and progress
is easy to define.

5.1 Experimental setup
We ran all benchmarks on an Intel Core 2 Duo Q6700
running at 2.66 GHz with 2 GB of RAM. We utilized
PAPI 4.0 software running on a patched 2.6.26 Linux
kernel for PMC monitoring.

Progress in the “sort” problem We defined progress
as the percentage of the total number of “moves” re-
quired to put all elements in their correct places. The
quicksort algorithm, for example, moves each element
once to its final correct position (when that element is
used as a pivot). In a mergesort however, each element
can be moved up to log2 (n) as the list an element be-
longs to will be merged log2 (n) times with another list.
Note that although the exact number of moves varies,
the notion of progress stays the same and we can there-
fore define progress independently of the implementa-
tion solely based on high-level knowledge about the
sort problem. By design, progress is a monotonically in-
creasing function and. Total progress is thus between 0
when no elements have been moved in place and 1 when
the array is sorted. As the sort algorithm progresses, it
updates a counter which is periodically polled.

Notion of energy We measured the average instanta-
neous power consumed over a small time increment as
described in [22] for the Q6600 processor. The time in-
crement is small enough to assume that the power con-



sumed stays constant over the interval. Since the Q6700
and the Q6600 are very similar (except for clock-speed)
we used it as is (changing only the clock-speed) and re-
moved the temperature influence. Note that since the
Q6700 only allowed 2 HW counters in 32 bit mode,
the 4 counters required by the power formula are multi-
plexed (measured every other polling “tick”).

We kept track of the cumulative energy consumed
by the processor over the execution of the entire bench-
mark.

Both progress and average power are computed every
1ms and the values are dumped at the end of the run.

Benchmarks We used different standard sort imple-
mentations: the standard qsort, an improved quicksort
(qui) which performs an insertion sort for short arrays,
an improved quicksort to sort linked lists (quilist), a
shell sort (shl), a heap sort (heap) and a merge sort
(merge). All algorithms were inspired from [7, 20].

5.2 Results
We do not seek to compare the performance of the dif-
ferent sort algorithms, rather we wish to show that it is
possible to pick, early on, the most efficient algorithm
to reduce the overall average energy consumption. Al-
though the sort algorithms are simple and well under-
stood, they illustrate this point convincingly.
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Figure 2. The sort algorithm on a small dataset
(100, 000 random elements)

In Figures 2 and 3 we present the cumulative al-
gorithmic efficiency for a small randomly generated
dataset (100, 000 elements) and a large one (50, 000, 000
elements). The cumulative algorithmic efficiency corre-
sponds to the running ratio of the algorithmic progress
to the cumulative energy consumed. Note that certain
lines finish earlier than others as not all algorithms take
the same amount of time to run.

Before validating our technique, we note that the
graphs behave as one would expect. In particular, the
quicksort type of sorts have a plateau of an efficiency of
0 at the beginning which corresponds to the algorithm
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Figure 3. The sort algorithm on a large dataset
(50, 000, 000 random elements)

“dividing” the problem before conquering. Indeed, it
first needs to get to the leaf partitions before moving a
single element into place. Similarly, we see that the rate
of increase of the heap-sort efficiency increases. This
can be explained by the fact that placing elements gets
easier and easier as the heap is smaller and smaller.

The key question in our technique is whether the
choice for the most efficient way can be made early
enough to actually save energy. We represent this as
the effectiveness line in the Figures. The line cor-
responds to the ratio of Pt (X) over Pa where Pt (X)
is the sum of the energy used by all the ways up until
time X plus the minimum energy required to complete
the computation and Pa is the average energy used by
a single way. When we can pick the most efficient way
when Pt (X) < Pa we have saved energy on average.
This corresponds to an effectiveness of less than 1
and is represented by the vertical solid line. Therefore,
if we can determine the most energy efficient way at a
time to the left of that line, the technique is viable. We
note that this is very clear for the small data-set (pick-
ing the quilist algorithm) but for the large data-set we
would most likely pick the merge algorithm instead of
the qui one. This particular case is due to the fact that
merge-sort has a very high efficiency at the beginning.
This has to do with the notion of progress we defined
as the merge sort starts moving elements around much
more quickly than the quicksort algorithms (although
it moves them around more often). Therefore, its effi-
ciency is much higher to begin with. A different mea-
sure of progress could mitigate this issue. In any case,
even the choice of merge-sort would produce a second
best energy efficient choice.

6. Related work
Machine learning techniques have been used to try to
learn the best match between a specific algorithm and a
hardware target [16] or between different algorithms and



a hardware target [14]. Our approach is less about using
learned information to adapt but rather about selecting
dynamically and just in time the most energy efficient
algorithm. Learning can also play a part in our approach
by allowing for a smarter and smaller set of possibilities
from which to choose from and therefore reducing the
overall number of “ways” to run simultaneously.

The problem of matching the computation to hetero-
geneous resources was also partially addressed by the
GLIMPSES [25] approach that allows selection of par-
titions to be offloaded to the SPUs of a Cell processor.
The idea behind GLIMPSES is to obviate the need for
a model by selecting partitions that meet all of a pre-
defined set of conditions: low percentage of conditional
branches, high amount of auto-vectorizable loop and a
memory partition which fits in the local SPU’s memory
(to obviate the need for a potentially inefficient software
cache). However, GLIMPSES does not deal with dy-
namic conditions nor does it analyze the tradeoffs when
some of these conditions are not met (such as a high
percentage of vector loops but also a high percentage of
conditional branches).

The evidence of algorithmic diversity, which we ex-
ploit here to obtain more energy efficient algorithms,
is widespread [10, 15, 17]. Diversity has also been ex-
ploited in some very specific situations (for example,
ManySAT [4]) to obtain speedups. However, to our
knowledge, the utilization of diversity to select a good
algorithmic fit for a given hardware is novel.

Utilizing the PMC to monitor energy or power con-
sumption for a thread is not new and has been used
mainly for scheduling [22] or determining a “bias” to-
wards a particular type of core [12]. However, our work
is novel because we do not only monitor power but
associate it with an algorithmic metric indicating the
progress of the algorithm. Our approach is therefore able
to compare different algorithms solving the same prob-
lem whereas a pure energy based approach would not.

7. Conclusion and future work
In this position paper, we have motivated the need and
usefulness of monitoring a novel metric: algorithmic en-
ergy efficiency which captures how well an algorithm is
performing on a platform for a given input data. We have
described how the n-way paradigm could be adapted to
exploit this metric and utilize idle cores to select the
most energy efficient algorithm.

Note that our technique also applies to finding the
algorithm that best matches a given platform. Instead of
using the PMC to estimate power consumption, they can
be used to evaluate a “matching” criteria to the platform.
This could be particularly useful for heterogeneous plat-

forms. For example, GPUs are very efficient for vector
computations but highly inefficient when there are too
many branches. A hardware impact metric taking into
account the number of branches could help select the
appropriate algorithm for the platform.

As future work, we will investigate how best to deal
with algorithms which have very non-uniform energy
efficiency. We believe that the relative behavior of dif-
ferent phases of an algorithm could be characterized of-
fline and used to weigh the energy efficiency metric ap-
propriately. We could therefore define a “progress pro-
file” for an algorithm and greatly reduce the effect of
non-uniformity in algorithmic progress.

We are also currently working on expanding our test-
ing framework to other benchmarks to see how widely
applicable our idea is. In particular, although we are only
considering sequential codes at this point, we believe
that diversity is also present in the way a program is par-
allelized with differences in energy consumption being
caused by different types of parallelization approaches.
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