
Opportunistic Computing: A New Paradigm for Scalable Realism on Many-Cores
Romain Cledat, Tushar Kumar, Jaswanth Sreeram, Santosh Pande

Georgia Institute of Technology, Atlanta, GA
romain@gatech.edu, tushark@ece.gatech.edu, jaswanth@cc.gatech.edu, santosh@cc.gatech.edu

Abstract

With the advent of multi-cores and many-cores, tradi-
tional techniques that seek only to improve FLOPS of per-
formance or the degree of parallelism have hit a roadblock
with regards to providing even greater performance. In or-
der to surmount this roadblock, techniques should more di-
rectly address the underlying design objectives of an appli-
cation.
Specific implementations and algorithmic choices in appli-
cations are intended to achieve the underlying realism ob-
jectives in the programmer’s mind. We identify two specific
aspects of this realism that traditional programming and
parallelization approaches do not capture and exploit to uti-
lize the growing number of cores. The first aspect is that the
goal of minimizing program execution time can be satisfac-
torily met if the program execution time is low with suffi-
ciently high probability. We exploit the fact that randomized
algorithms are available for many commonly used kernels,
and that the use of parallelism can achieve very low ex-
pected execution times with high probability for these algo-
rithms. This can provide speedups to parts of the applica-
tion that were hitherto deemed sequential and ignored for
extracting performance via multi-cores.
The second aspect of realism that we exploit is that impor-
tant classes of emerging applications, like gaming and in-
teractive visualization, have user-interactivity and respon-
siveness requirements that are as important as raw perfor-
mance. Their design goal is to maximize the functionality
expressed, while maintaining a high and smooth frame-rate.
Therefore, the primary objective for these applications is
not to run a fixed computation as fast as possible, but rather
to scale the application semantics up or down depending
on the resources available. Our framework intends to cap-
ture the responsiveness requirements of these applications
as they pertain to expressed realism and automatically scale
the application semantics expressed on every architecture,
including very resource-rich many-cores.

1 Introduction
Traditionally, to evaluate “performance” in an applica-

tion, FLOPS are a very common measure. However, the
underlying design criteria is realism rather than FLOPS.
The notion of realism in an application differs depending
on the application and is best illustrated with examples. In
a simulation application, it can be how closely the simula-
tion matches the physical phenomenon being simulated. In
a live video encoding application, it can be how well the
transmitted compressed video reflects the original source.

In the era of single cores, measuring FLOPS was an ade-
quate substitute to measuring realism but this is not true for
multi-cores. Today, to improve realism, an application must
make effective use of an ever growing number of cores.

When designing an application, the programmer’s driv-
ing goal is to maximize realism under constraints. For
example, in a simulation of a continuous physical phe-
nomenon, realism can be increased with a finer grain sim-
ulation timestep but this must be balanced with the amount
of time available for the simulation. However, while the
amount of realism is usually traded-off with total execution
time, for some applications where interactivity with users is
a key component, it must also be balanced with the need to
be responsive. Video games, for example, try to maximize
the level of immersion while maintaining a good frame-rate.
Thus, the design of an application comes down to maxi-
mizing the amount of realism you can pack given execution
time constraints and responsiveness constraints.

1.1 Limitations of traditional models

Traditionally, to increase the realism in applications, pro-
grammers have relied on i) task and data parallelization
techniques, and ii) an increase in clock frequency with each
new generation of processors. Programming in a concur-
rency friendly way is an important goal [6] through which
significant improvements in application realism have been
gained. However, the task and data parallelism techniques
focus on breaking down an application into parts. In many
applications, such as game engines [3], this process of de-
composition quickly hits a wall. It is hard to statically de-
compose the application or dynamically detect available
parallelism [2, 1] to a sufficient degree to take advantage of
the growing number of processor cores. Further, the sequen-
tial parts of an application do not benefit from the current
growth in the number of cores available in a processor. The
speedup achievable on the sequential parts of the applica-
tion is limited by the relative stagnation in processor clock
frequencies. Amdahl’s law dictates that the overall applica-
tion speedup achievable through traditional parallelization
is limited by the amount of serial code present. For exam-
ple, if 40% of an application is serial code, the maximum
parallel speedup is limited to 2.5 regardless of the number
of cores used. Therefore, with the stagnation of processor
clock frequencies, the extent of serial code present is fast
becoming the principal bottleneck towards utilizing multi-
cores for greater realism in many applications.

1.2 Application Characteristics

This paper relies on two currently unexploited applica-
tion attributes to obtain greater realism on multi-cores in the
presence of serial code. First, we exploit the fact that there

are a plethora of randomized algorithms for many sequen-
tial kernels commonly found in applications. Concurrently
invoking multiple independent instances of a randomized
kernel considerably enhances the probability that at least
one instance will complete with execution time much lower
than the average case execution time, thereby speeding up
the sequential kernel with high probability. Additionally,
there are numerous sequential algorithms already in use in
current applications that utilize randomness in their compu-
tation. While such algorithms are not formally considered
randomized algorithms, their probabilistic execution time
characteristics are often sufficient to achieve a speedup on
multi-cores in a manner similar to formal randomized algo-
rithms. We specifically study genetic algorithms as exam-
ples of algorithms with suitable random characteristics.

The second application attribute we exploit is that of
scalable semantics inherent in many applications, specially
immersive application like gaming, multimedia and inter-
active visualization. Due to the very nature of such appli-
cations, the execution time complexity of their algorithms
is significantly affected by the values of a few key param-
eters. Parameters such as the granularity of the simulation
time-step and the types of interactions between game-world
objects considered, confer scalable semantics to the physics
and Artificial Intelligence (AI) components of a game. The
programmer’s design goal is to have game components ex-
ecute at the highest level of sophistication possible while
also keeping the game responsive to the user by maintain-
ing a sufficiently high frame-rate. Such scalable semantics
allow the execution time of sequential algorithms to be dy-
namically adjusted when they become bottlenecks towards
achieving a high frame-rate. Further, scalable semantics
also allow selection between algorithmic models of differ-
ent levels of sophistication based on the expected number of
core resources needed by each alternative. Therefore, scal-
able semantics not only alleviate sequential bottlenecks but
also enable the effective utilization of multi-core resources.

1.3 Contributions

We have motivated that traditional techniques, while be-
ing able to improve realism through increased FLOPS, will
not be able to take full advantage of the growing number
of cores. Our proposed framework effectively utilizes addi-
tional cores towards achieving greater realism once the tra-
ditional techniques saturate in the number of cores they can
utilize. We make the following specific contributions:
• We recognize that randomized algorithms exist for

many common compute intensive sequential kernels. Cer-
tain domain-specific sequential algorithms that make use of
randomness, such as genetic algorithms, also benefit from
our technique. We demonstrate a runtime framework that
utilizes extra cores to dramatically improve the expected ex-
ecution time of the sequential code and hence of the overall
application. We note that for applications containing ran-
domized algorithm kernels, an application-agnostic runtime
framework is needed to extract the statistical characteristics

of the component kernels with sufficient accuracy. This al-
lows correct prediction of resources required to achieve a
sufficient application-wide speedup with high probability.
• We recognize that in a new compute-intensive class of

emerging interactive applications, responsiveness is as im-
portant a design goal as realism. The overarching design
goal of such applications is to maximize the realism exhib-
ited on any given hardware platform, subject to responsive-
ness constraints. Our framework allows the programmer to
intuitively express the limitations that responsiveness im-
poses on realism. At runtime our framework scales the ap-
plication semantics to achieve the maximal realism possi-
ble on every hardware platform, whether severely resource-
constrained or very resource-rich.
• We motivate that a unification of the randomized al-

gorithms framework and the application semantics scal-
ing framework serves to significantly increase the number
of cores that can be effectively utilized to allow impor-
tant emerging applications to express maximal realism. We
call this unified framework the Opportunistic Computing
Paradigm.

It is important to note that the techniques we present
are not a replacement for traditional techniques for task
and data parallelism. Our techniques are intended to effec-
tively use cores that are left idle after traditional techniques
have been applied. In Section 2 we present the framework
that uses extra cores to minimize the expected execution
time of sequential randomized kernels. Section 3 describes
the framework that utilizes extra cores to scale application
semantics subject to responsiveness constraints. Section 4
presents the unified Opportunistic Computing framework.
Section 5 concludes with future work.

2 Sequential randomized algorithms on
multi-cores

For a fixed input, certain types of sequential algorithms
complete in a varying amount of time due to algorithmic
non-determinism. Randomized algorithms are a very simple
example of such algorithms where the completion time is
distributed according to a known (or derivable) probability
density function (PDF). However, other types of algorithms,
which are not considered randomized algorithms, also make
use of randomness. Genetic algorithms are a good example.
For these algorithms, the PDF of their execution time, even
for a fixed input, may not be well known or well studied. Fi-
nally, one can also view a collection of heuristics perform-
ing the same computation as a randomized algorithm with
the choice of heuristic as the random choice thus allowing
our framework to be extended to some algorithms that make
use of heuristics.
For all the algorithms described above, the presence of ran-
domness in the algorithms leads to variation in execution
time and the important measure becomes the expected time
of completion. In the simple case of randomized algorithms,
the expected completion time is the same for all inputs with

the same characteristics (such as size, etc.) and can usually
be derived mathematically [4]. However, other algorithms
have more complex and less analytically evident behavior.
However, for a given input, these algorithms will still have
a PDF of execution time, which can be experimentally con-
structed by sampling, from which an expected completion
time can be estimated. We present an approach that seeks
to utilize untapped processor cores to improve the expected
execution time to completion.

2.1 Parallelism opportunity

Program

Input
Program

Kernel Inputs

I
1
, I

2
... I

k
A

Figure 1: Example structure of a program with a kernel A that
exhibits variations in execution time

Consider Figure 1. Box A represents a sequential algo-
rithm identified by the programmer that has a well defined
and stable PDF for execution time. The goal is to minimize
the overall execution time of the program P . P has a fixed
input butA is invoked repeatedly within P with multiple in-
puts I1...Ik. Our approach consists of replacing the invoca-
tion ofA on input Ij by n instances ofA running in parallel,
Gn (A), where each instance will operate on Ij but make
independent random choices. Gn (A) terminates when the
first Ai terminates.

2.2 Establishing speedup

The goal of our system is to pick the best n (number of in-
stances to run in parallel) to achieve the maximal speedup.
We must thus be able to calculate the expected speedup of
running n instances versus just one instance.

Speedup for a fixed input Let us for now consider a fixed
input I to A. We call F1 the cumulative distribution func-
tion (CDF) of A on input I . Similarly we call Fn the CDF
obtained by running n instances of A in parallel and taking
the best (smallest) execution time. It is easy to show that
Fn (t) = 1− (1− F1 (t))n. This is because the probability
for each independent randomization of A to not complete
within time t is 1 − F1 (t). Therefore, supposing knowl-
edge, either theoretical or experimental, of F1 will allow us
to compute the expected speedup Sn = E1

En
where En is

the expected time for n parallel instances deduced from the
CDF and E1 is the expected sequential execution time.

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 s

p
e

e
d

u
p

Number of cores

Underlying distribution
Uniform [0−10] (σ/µ=0.58)
Uniform [2−8] (σ/µ=0.35)

Gaussian σ=5, µ=100 (σ/µ=0.05)
Gaussian σ=25, µ=100 (σ/µ=0.25)
Gaussian σ=33, µ=100 (σ/µ=0.33)

LogNormal Μ=1, Σ=0.5 (σ/µ=0.53)
LogNormal Μ=1, Σ=1 (σ/µ=1.31)

LogNormal Μ=1, Σ=1.5 (σ/µ=2.91)
BiModal 10,200 (σ/µ=0.90)

MultiModal 10,200,380,590 (σ/µ=0.72)

Figure 2: Speedups obtainable through our technique

Theoretical speedups In Figure 2, we show the ex-
pected theoretical speedup for different distributions F1.
The results show that whenever the spread σ/µ is high, our
technique produces higher speedup. This is consistent with
the intuition that when the spread is large, running multi-
ple independent instances of A leads to a high probability
that at least one instance will complete with a low execu-
tion time, leading to a scrunching of the spread. A very nar-
row Gaussian distribution for example produces almost no
speedup while one with a large spread produces significant
speedup. Note that our technique can also produce super-
linear speedups in cases with a large σ/µ spread.

Predicting speedup We have shown that it is possible to
calculate the expected speedup for a given input provided
knowledge of the underlying completion time distribution.
However, in our application, A will be repeatedly invoked
with different inputs (and not on the same fixed input). We
must thus be able to predict the statistics of the execution
behavior of A on input Ij+1 given the observed execution
behavior of A on inputs I1 through Ij . This implies that
a certain stability of the underlying distribution must exist.
This limits the scope of our technique to kernels where the
underlying execution time distribution changes sufficiently
slowly over subsequent inputs Ij so that the previously es-
timated PDF is still applicable.

Distribution estimation The calculation of expected
speedups relies on the knowledge of the distribution. In
most cases, prior knowledge of the distribution is not avail-
able and it will need to be learned. For a variety of distri-
butions, Figure 4 shows how closely the learned expected
speedup matches the theoretical expected speedup. We see
that very few runs ofA are required to converge on a correct
value. Note that we need to learn the F1 distribution but in
practice, we will observe samples from Fn. Given the re-
versibility of the formula linking Fn and F1, we can always
correct F1 based on observations of Fn.

The Travelling Salesman problem with GALib GALib
[7] is a library that implements genetic algorithms. Al-
though the time variation in a step of the algorithm is not
heavily dependent on the random choices used in that step,
they do affect how much improvement in “population fit-
ness” (score) is achieved in the step. Therefore, we can
run multiple instances of each step where each instance
makes independent random choices and instead of picking
the fastest instance, we pick the instance that achieves the
best population fitness. This indirectly leads to a speedup
for the application by reducing the number of steps needed
to converge to an acceptable result. Figure 3 shows the evo-
lution of the score PDF for different windows of genetic al-
gorithm steps in the simulation. Each window consists of 15
consecutive steps. We see a clear evolution in the PDFs and
they evolve sufficiently slowly for our techniques to apply.

 0
 0.25
 0.5

 0.75

 8000 26000

Population score

Window 1
 0

 0.25
 0.5

 0.75 Window 2
 0

 0.25
 0.5

 0.75

P
ro

b
a

b
ili

ty
 D

is
tr

ib
u

ti
o

n

Window 8
 0

 0.25
 0.5

 0.75 Window 9
 0

 0.25
 0.5

 0.75 Window 19
 0

 0.25
 0.5

 0.75 Window 20

Figure 3: Evolution of GALib’s distribution

 0.5
 1

 1.5
 2

 2.5

U
niform

 [0-10]

U
niform

 [2-8]

G
aussian(5,100)

G
aussian(25,100)

G
aussian(33,100)

LogN
orm

(Μ=1,Σ=0.5)

LogN
orm

(Μ=1,Σ=1)

LogN
orm

(Μ=1,Σ=1.5)

BiM
odal

M
ultiM

odal

After 6 samples

 0.5
 1

 1.5
 2

 2.5

P
re

d
ic

te
d

 S
p

e
e

d
u

p
/T

ru
e

 S
p

e
e

d
u

p

After 16 samples

 0.5
 1

 1.5
 2

 2.5 After 51 samples 2 cores 4 cores 8 cores

Figure 4: Convergence of the estimated execution time for a variety of distributions shown
with error-bars over multiple runs

2.3 Challenges in real applications

There are two main challenges to running multiple in-
stances of a sequential algorithm in parallel:

Sand-boxing shared state Semantically, the only issue
with replacing A by Gn (A) is making sure that each Ai

runs in a sand-boxed environment. In other words, each time
anAi accesses state outside its scope, it must go through our
API which will ensure that eachAi has a unique copy of the
data. Only the Ai that is finally chosen will have its state
merged back into the main application’s state. While this
approach resembles STM [5], it is much more lightweight
as there is no need for any conflict detection.

Minimizing overall application time The goal of our
system is to minimize overall application execution time.
We have shown how to minimize the execution time of just
one algorithm A. Suppose now that A and B are two ran-
domized algorithms that run in parallel in the original ap-
plication. If the execution of A and B does not overlap (i.e.,
they do not have portions that run in parallel), we can simply
apply the first case to both A and B independently. How-
ever, if they do overlap and access shared state, they may
interact with each other in unpredictable ways which must
be faithfully represented when replacing A with Gn1 (A)
and B with Gn2 (B). We can deal with this case by consid-
ering a new abstract algorithm C = (A,B). Each instance
of A is thus associated with a single instance of B to form
an instance of C. If A andB are kernels, the time span of C
will be limited and we can use the previous case to calculate
n for Gn (C) and we have n

2 = n1 = n2. Note that in this
case, the sand-boxing of Ci will sand-box both Ai and Bi

together.
The scheme described above is generalizable to any

number of concurrent kernels. The runtime can dynamically
form tuples of algorithms that overlap, in order to maintain
correct program semantics. The speedup we have demon-
strated for a single randomized algorithm can thus translate
into a speedup for the overall application whether the appli-
cation has one or more randomized algorithm in it.

3 Scaling semantics: Achieving realism with
responsiveness

A smooth and continuous user-experience is paramount
for emerging compute-intensive applications like gaming
and interactive visualization. The immersive world simu-
lated by these applications needs to be updated at a suf-
ficiently high frame-rate to provide a realistic experience
to the user and to react in real-time to arbitrary user input.
The need for predictable and continuous responsiveness of
the application conflicts with the desire to pack as much
realism as possible on a given hardware platform. Program-
mers are willing to adjust the sophistication of the immer-
sive world, seeking to use models of greater sophistication
when more resources are available, and using simpler mod-
els on resource-limited architectures so as to avoid violat-
ing the responsiveness constraints. For large complex ap-
plications like gaming, programmers eschew the use of for-
mal real-time constructs and languages as these require the
decomposition of the application into tasks, dependencies
and deadlines. Instead, they implement their application as
a monolithic application using conventional C/C++ flows
for their significant productivity advantages. The respon-
siveness behavior then becomes an emergent quality of the
application rather than a quality enforced by design. The de-
sired responsiveness on a given set of platforms is typically
achieved in a trial-and-error manner by extensive manual
tweaking of the complexity of algorithms and models used.
The Soft Real-time (SRT) part of our framework is designed
to achieve the following goals:

Scaling of Algorithmic Sophistication Automatically
pick models and algorithms that express the maximal
realism on the current hardware platform while not
violating the responsiveness constraints.
Scaling to unused cores Use idle or under-utilized

cores to evaluate multiple models or algorithm alterna-
tives simultaneously to maximize the likelihood of pick-
ing the most sophisticated alternative possible under re-
sponsiveness constraints.

We had to overcome the following challenges in order to
achieve the above mentioned goals in an application and do-
main agnostic manner. We use a gaming application shown
in Figure 5 to illustrate how each of these challenges is over-
come in our framework.

frame “Game”

model

frame
frame frame

run_frame()

Physics
AI

model
Rendering

objective:
Consume

< 40% of “Game”

objective:
Achieve 25 to 40 fps, with probability > 90%

…..

Sim
ple

algo

com
plex

algo Simplest Most
complex

Figure 5: SRT with the Torque game engine

Demarcation A conventionally written C/C++ applica-
tion lacks inherent constructs using which the application’s
responsiveness requirements can be inferred. However, it is
simple for the programmer to use SRT API calls to demar-
cate the regions of the application over which responsive-
ness constraints apply. Such demarcations are applied over
the existing module structure of the application, thereby
eliminating the need for restructuring the application code.
The demarcations, called frames are detected at runtime, al-
lowing the construction of the average frame structure of
the application. In Figure 5, a programmer knowledgeable
about the application knows that the run frame() func-
tion renders the next time-step of the game world includ-
ing evaluating all relevant game world interactions. There-
fore, the entry and exit of this function is demarcated as a
frame through the SRT API, and a desired responsiveness
constraint on the frame-rate is expressed. Further, program-
mers implementing the AI, Physics and Rendering modules
understand that their individual modules have the potential
to dramatically impact the game frame, and they demar-
cate their functionality as well so that the SRT system can
track it. The Physics frame also has a responsiveness con-
straint specified to use less than 40% of the game-frame’s
execution-time with high probability.

Scalable algorithm alternatives In order to scale the re-
alism expressed by the application, the SRT system needs
to be provided with alternative algorithms that differ in
their contribution to realism and the corresponding execu-
tion complexity. This is achieved via SRT API calls where
the programmer specifies multiple alternative C/C++ func-
tions within each abstract model API construct. A program-
mer typically knows the viable algorithmic alternatives for
a piece of functionality in their module and can easily iden-
tify them via the SRT API. For example, as shown in Fig-
ure 5 the AI programmer would know alternative parame-
ter settings or algorithms that can significantly vary the so-
phistication of the AI at the cost of running time. In this
framework, the programmer is no longer responsible for de-
termining or guaranteeing the impact of each algorithm al-
ternative on the satisfaction of overall responsiveness con-
straints, as this impact is discovered at runtime by SRT on
the current hardware.

Making Correct Choices The SRT system needs to
choose algorithm alternatives in each model so that the
choices allow the overall responsiveness constraints to be
met and the chosen alternatives should exhibit maximal re-
alism on the current platform. This problem is intractable in
general. However, we make this problem tractable by rely-
ing on the following:

1) Average Frame Structure Applications with respon-
siveness constraints have a fairly consistent repetitive struc-
ture and this is readily captured using the dynamic demar-
cations of frames. In very few iterations within the appli-
cation (3-4 iterations within a few milliseconds), the aver-
age frame structure (as illustrated in Figure 5) is reliably
constructed and can be used to start studying the impact of
model choices in one part of the structure on other parts of
the structure.

2) Reinforcement Learning is a proven technique that
continually trains which actions in any given state achieve
the best rewards. We use Reinforcement Learning to track
the association between models and objectives, i.e., detect
which models affect which objectives, to what extent and
track gradual changes in the associations. In a system where
multiple models are potentially being executed within a sin-
gle high-level frame, Reinforcement Learning is capable of
detecting the complex associations between a large number
of models and objectives.

3) Feedback Control In applications such as fast-action
gaming and video encoders, the nature of the game scene
or raw video sequence often changes significantly within
10 − 30 game/video-frames. Consequently, the execution
time complexity previously learned for individual model
choices would no longer be valid. Reinforcement Learn-
ing would take too long to re-learn the new mapping be-
tween model choices and expected execution times. There-
fore, a Feedback Controller that incrementally adjusts the
next model choice applied based on the outcome of the pre-
vious selection is both fast and robust in response. The SRT
runtime is a fast, low space-and-time overhead implemen-
tation of Reinforcement Learning and Feedback Control.

4) Probabilistic Satisfaction Large compute-intensive
immersive applications are non safety-critical. Safety-
critical applications like flight control software (avionics)
are implemented using specialized hard real-time tech-
niques and do not attempt to maximally utilize platform
resources for realism. Hence the responsiveness constraints
for large complex compute-intensive applications are
probabilistic in nature as illustrated in Figure 5. The more
manageable burden on the SRT system is to meet the most
important constraints at the cost of less important ones, to
meet timing constraints as closely as possible if not exactly,
and to predict impact of choices with a sufficiently high but
not 100% probability. Use of RL on the Average Frame
Structure suffices to achieve these more relaxed goals.

We applied the SRT system to a commercial game engine
called Torque as described in Figure 5. As shown in Figure

 0

 1

 2

 3

 4

A
I

L
e
v
e
l
s

 10

 20

 30

 40

 50

 60

 70

 80

 100 300 500 700 900 1100 1300 1500 1700

F
P
S

Torque with SRT
Baseline Torque

Figure 6: Comparing frame-times in Torque game engine with and
without SRT

6, the SRT system enables the average game frame-rate to
lie within the desired window of 25-42 frames-per-second
for 89% of the frames, compared to just 61% for the unmod-
ified Torque game. At the same time SRT more effectively
utilizes the compute resources to spend 4.3ms on AI per
frame on average instead of 3.7ms in the case of Torque
without SRT. Both instances executed on a game scenario
where AI was a large part of the frame time, and the time
needed by AI varied greatly over the course of the game.

4 Unified opportunistic framework
While certain applications could benefit from using

just one of the two proposed frameworks, other emerging
compute-intensive applications may need to use both in or-
der to achieve sufficient improvements in realism. The abil-
ity to use both frameworks also increases the likelihood that
more parts of the application will be able to take advantage
of multi-cores. Games are prime examples of applications
that need both approaches: scalable semantics in AI and
physics components for scaling the user experience subject
to the resource limitations of the underlying platform, and
randomized sequential algorithms such as path-finding and
AI whose speedup will enhance realism on every platform.

Since both approaches need to consume from the same
set of available cores, the goal of best overall application re-
alism intertwines the optimization and resource-utilization
methodology of the two approaches. Here we identify the
principal considerations that would allow a unified frame-
work of the two approaches to maximize overall applica-
tion realism. The realism objectives in the application can
be specified by the programmer at multiple levels of hier-
archy. Wherever a scalable or randomized sequential com-
ponent of the application does not have an explicit realism
objective specified for it, a realism objective would need to
be inferred for it from higher level realism objectives. The
objectives, whether specified or inferred, dictate a specific
execution time to be achieved by the component (achieving
minimal execution time is treated as a special case).

We allow components to contain sub-components of ei-
ther type. With this setup, we can propagate realism ob-
jectives as needed. If a component has concurrently exe-
cuting sub-components, the specified execution time objec-
tive applies separately to all concurrent sub-components. In
the special case of the minimize-execution-time objective,
the sub-component that is expected to be the bottleneck
should inherit the minimize-execution-time objective, but

other sub-components should infer a specified-execution-
time objective based on the expected execution-time of the
bottleneck sub-component.

When a component contains a sequence of sub-
components executing in series, the specified execution-
time objective must be divided up into execution-time
constraints for the sub-components in a manner that al-
lows components to contribute the maximal realism given
the amount of resources available to share. For the spe-
cial case of minimize-execution-time objective applied to
the component, the serial sub-components would all mini-
mize their execution-time, with any scalable semantics sub-
components achieving this by picking their least sophisti-
cated model choices.

5 Conclusion
In this paper, we have motivated that the underlying de-

sign goal for compute-intensive applications is maximum
realism. Current parallelization techniques limit themselves
to deterministically improving performance FLOPS, with
the sequential components limiting the number of cores that
can be utilized.

We exploit two characteristics that occur in many
compute-intensive applications: algorithmic randomness
and scalability of semantics, that allow us to gain applica-
tion speedup and realism above and beyond what current
parallel programming techniques allow on processors with
a growing number of cores. Our techniques work in con-
junction with existing parallel programming techniques and
have the potential to deliver significantly greater utilization
of multiple cores towards achieving high realism.

Future work We have already separately prototyped the
two frameworks. We will continue to further develop them
and, at a later stage, combine them into a unified framework
that best utilizes multi-core resources for realism.

References
[1] K. Knobe. Intel concurrent collections. http:

//software.intel.com/en-us/articles/
intel-concurrent-collections-for-cc, 2009.

[2] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic parallelism requires ab-
stractions. In PLDI ’07, pages 211–222, 2007.

[3] V. Mönkkönen. Multithreaded game engine architec-
tures. www.gamasutra.com/features/20060906/
monkkonen_01.shtml, 2006.

[4] R. Motwani and P. Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

[5] N. Shavit and D. Touitou. Software transactional memory. In
PODC ’95: Proceedings of the fourteenth annual ACM sym-
posium on Principles of distributed computing, pages 204–
213, New York, NY, USA, 1995. ACM Press.

[6] H. Sutter. The free lunch is over. http://www.gotw.ca/
publications/concurrency-ddj.htm, 2005.

[7] M. Wall. Galib. http://lancet.mit.edu/ga/, 2009.

