
RSTM: A Relaxed Consistency Software Transactional Memory System for Multicores
Jaswanth Sreeram, Romain Cledat, Tushar Kumar, Santosh Pande

Applications: Games, Multimedia

Distinct properties

• Large amount of shared state

• High-performance requirements (frame rates)

• STM overheads are sometimes unacceptable

• Large existing codebases

• Proving hard to scale using locks (programming 
complexity)

• Are “error-tolerant”: Can sometimes tradeoff 
“accuracy” for performance

• Predominantly written in C/C++

RSTM – Key Ideas

Sacrifice data consistency for performance 

(carefully and where appropriate!)

Group shared variables according to the type of 
synchronization they need

Relax synchronization for variable groups that don’t 
require strict STM semantics.

Result: Fewer aborts due to shared variables for 
which strict read/write synchronization is unnecessary 
to produce acceptable results.

Consistency Groups

“Collection of named shared variables that a 
transaction reads/writes, on which a consistency 
policy is applied”

• Not all variables require strict read/write 
synchronization.

Dynamic

• The same variable may be in different groups 
simultaneously or at different instants.
atomic T1 {

openForRead(&a, sizeof(a), GROUP1)

if(…) {

openForRead(&a, sizeof(a), GROUP2);

} 

}

Consistency Modifiers

Specifies the consistency policy to be applied to a 
group in a Transaction ‘T’

• NONE No read/write conflict check will be performed 
for this group when T is committing.

• SINGLE-SOURCE (T1, T2,..) Exactly one of T1, 
T2… allowed to modify shared data in a group without 
causing a conflict with T.

• MULTI-SOURCE(T1, T2…) Similar to SINGLE-
SOURCE except any of T1, T2,… are allowed to 
modify data.

Bookkeeping

Bookkeeping for memory regions instead of 
program objects.

• Vital for C/C++ programs with direct memory 
accesses.

“Zone” : Basic unit of bookkeeping.

• A contiguous region of memory with the same 
metadata (version)

Smart Zone management

• Several strategies to minimize the number of 
zones to keep track of.

Case Study: Particle Simulation

Simulates particle interactions & motion (mutual 
gravity, external forces)

• Influence of neighbors on a particle depends on the 

distance between

them.

Relaxation of STM semantics allows reading stale 
attributes of far away neighbor particles without 
aborting at commit.

Fraction of Peak Throughput Achieved

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1024/16 2048/32 4096/32 4096/64

Number of particles / Number of threads

Fr
ac

tio
n 

of
 p

ea
k 

th
ro

ug
hp

ut

Baseline
RSTM

Transaction Throughput

0

5

10

15

20

25

30

35

40

1024/16 2048/32 4096/32 4096/64

Number of Particles / Number of Threads

Nu
m

be
r o

f C
om

m
its

 p
er

 s
ec

on
d

Baseline
RSTM

Reduction in Aborts

0

50

100

150

200

250

300

350

400

450

500

1024/16 2048/32 4096/64

Number of Particles / Number of Threads

N
um

be
r 

of
 A

bo
rts

Baseline
RSTM

Performance Results

(Baseline is standard STM with strict consistency)

Thread 1 Thread 2 Thread 3

Transaction
Object

Transaction
Object

STM
Manager

Memory
Manager

Read/Write groups Read/Write groups

STM - Overview

Software Transactional Memory model

• For Non Blocking Synchronization

•“Transaction”: Section of code that executes 
atomically.

Implementation

• Keep track of versions of shared data.

• At commit time, detect read/write conflicts between 
concurrent transactions.

• Abort & retry if conflict detected.

STM Overheads

Overheads due to STM implementation

• Bookkeeping, conflict resolution, state buffering..

Overheads due to STM semantics

• Difficult to specify fine grained consistency 
requirements for shared data

• Unnecessary conflicts and aborts due to variables for 
which “stale” values are acceptable

• Large performance penalty esp. for long running 
transactions.


