Jaswanth Sreeram, Romain Cledat, Tushar Kumar, Santosh Pande

STM - Overview

fos

oftware Transactional Memory model \

« For Non Blocking Synchronization

«“Transaction”: Section of code that executes
atomically.

Q Implementation
« Keep track of versions of shared data.

« At commit time, detect read/write conflicts between

/ STM Overheads
Q Overheads due to STM implementation
« Bookkeeping, conflict resolution, state buffering..
0 Overheads due to STM semantics

« Difficult to specify fine grained consistency
requirements for shared data

« Unnecessary conflicts and aborts due to variables for
which “stale” values are acceptable

« Large performance penalty esp. for long running

« Abort & retry if conflict detected.

concurrent transactions.

Consistency Groups

Q “Collection of named shared variables that a
transaction reads/writes, on which a consistency
policy is applied”

< Not all variables require strict read/write
synchronization.
QO Dynamic

« The same variable may be in different groups
simultaneously or at different instants.
atomic T1 {
openForRead(&a, sizeof(a), GROUP1)
if(...) {
openForRead(&a, sizeof(a), GROUP2);

Bookkeeping

QO Bookkeeping for memory regions instead of
program objects.

« Vital for C/C++ programs with direct memory
accesses.

QO “Zone” : Basic unit of bookkeeping.

« A contiguous region of memory with the same
metadata (version)

QSmart Zone management

« Several strategies to minimize the number of
zones to keep track of.

-

Ktransactions.

4

/K to produce acceptable results.

RSTM — Key Ideas
Sacrifice data consistency for performance
carefull

and where appropriate!

0 _Group shared variables according to the type of
synchronization they need

O Relax synchronization for variable groups that don’t
require strict STM semantics.

O Result: Fewer aborts due to shared variables for
which strict read/write synchronization is unnecessary

Read/Write groups

Read/Write groups

~

Memory
Transaction Manager Transaction
Object i Object

|

Manager

/

\

/

\/D Distinct properties

N

]

RSTM: A Relaxed Consistency Software Transactional Memory System for Multicores

Applications: Games, Multimedia

~

« High-performance requirements (frame rates)

« Large amount of shared state

« STM overheads are sometimes unacceptable
« Large existing codebases

« Proving hard to scale using locks (programming
complexity)

« Are “error-tolerant”: Can sometimes tradeoff

“accuracy” for performance
K * Predominantly written in C/C++ /

Consistency Modifiers

0 Specifies the consistency policy to be applied to a
group in a Transaction ‘T’

« NONE No read/write conflict check will be performed
for this group when T is committing.

* SINGLE-SOURCE (T1, T2,..) Exactly one of T1,
T2... allowed to modify shared data in a group without
causing a conflict with T.

¢ MULTI-SOURCE(T1, T2...) Similar to SINGLE-
SOURCE except any of T1, T2,... are allowed to
modify data.

Case Study: Particle Simulation

QO Simulates particle interactions & motion (mutual
gravity, external forces)

Performance Results

(Baseline is standard STM with strict consistency)

« Influence of neighbors on a particle depends on the

distance between x ® o o

@ o
o

them.

Thread 1 Thread 2 Thread 3
QO Relaxation of STM semantics allows reading stale

attributes of far away neighbor particles without

Fraction of Peak Throughput Achieved

R} 8 8 8

Number of Commits per second

1024116 2048/32 4096/32 4096/64

1024/16

2048132

Number of particles / Number of threads

Transaction Throughput

4096/32

Number of Particles / Number of Threads.

Reduction in Aborts

5
£ 300

Z m Baseline]
[aRSTM

1024/16 2048/32 4096/64

Number of Particles / Number of Threads

4096164

Qorting at commit.

Georgia Caollege off
Tech Compuifing

