
A Profile-Driven Statistical Analysis Framework for the
Design Optimization of Soft Real-Time Applications

Tushar Kumar, Jaswanth Sreeram, Romain Cledat, Santosh Pande
College of Computing

Georgia Institite of Technology

tushark@ece.gatech.edu, {jaswanth, romain, santosh}@cc.gatech.edu

ABSTRACT

Soft real-time applications lack a formal methodology for
their design optimization. Well-established techniques from
hard real-time systems cannot be directly applied to soft
real-time applications, without losing key benefits of the soft
real-time paradigm.

We introduce a statistical analysis framework that is well-
suited for discovering opportunities for optimization of soft
real-time applications. We demonstrate how programmers
can use the analysis provided by our framework to perform
aggressive soft real-time design optimizations on their appli-
cations.

The paper introduces the Context Execution Tree (CET)
representation for capturing the statistical properties of func-
tion calls in the context of their execution in the program.
The CET is constructed from an offline-profile of the ap-
plication. Statistical measures are coupled with techniques
that extract runtime distinguishable call-chains. This com-
bination of techniques is applied to the CET to find statis-
tically significant patterns of activity that i) expose slack
in the execution of the application with respect to its soft
real-time requirements, and ii) can be predicted with low
overhead and high reliability during the normal execution
of the application.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms

Design, Performance, Measurement

Keywords

Statistical Analysis, Profiling, Pattern Detection, Signatures,
Behavior Prediction, Soft Real-time

Copyright is held by the author/owner(s).
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
ACM 978-1-59593-811-4/07/0009.

1. INTRODUCTION
Soft real-time applications are currently designed and op-

timized using rather ad-hoc means. A very large class of
emerging applications fall under the category of soft real-
time, including end-user applications like gaming and stream-
ing multimedia (video encoders and decoders, for example).
Such applications tend not to be mission-critical like hard
real-time applications that require absolute guarantees that
their execution deadlines be met. With hard real-time ap-
plications, guarantees on meeting deadlines can be made by
following very conservative design principles with provable
properties [3], or by having a runtime system that conser-
vatively schedules the component tasks of the application
to ensure that certain real-time guarantees are met [7]. In
contrast, soft real-time applications do not require absolute
guarantees that their real-time constraints will always be
satisfied. Most soft real-time applications only require that
their deadlines are met most of the time, within certain sta-
tistical bounds. For example, a game or video decoder might
require an average frame-rate of 30 frames-per-second, with
95% probability that the instantaneous frame-rate does not
deviate from this average by more than 5 frames-per-second.
Such relaxation of guarantees allows a soft real-time applica-
tion to aggressively perform more sophisticated computation
and maximally utilize the available compute resources.

In contrast with hard-real-time systems where a large body
of modeling and scheduling work exists [3], soft real-time ap-
plications can use such a very wide variety of relaxed guaran-
tees that so far no sufficiently broad formal framework exists
for the analysis and design of these applications. The main
problem is the lack of tools that could assist a soft real-time
system designer in gaining the necessary insights to tighten
the application design.

This paper introduces a framework for the analysis of soft
real-time applications. The framework finds dominant or
recurring patterns of behavior from the profile of an appli-
cation, and produces signatures (detection patterns) that
can be used to i) identify the occurence of these behaviors
in future runs of the application, ii) predict the occurence of
these behaviors sufficiently in advance, and iii) make statis-
tical assertions about the likelihood of the occurence of these
behaviors during the application’s execution. The program-
mer can use these patterns to assess how well the application
will satisfy various relaxed real-time deadlines.

1.1 Related Work
Existing application profiling techniques look for program

hot-spots and hot-paths [6, 1] such as basic-blocks, loops or

functions exhibiting high execution-time. Certain dynamic
optimization techniques benefit from detecting hot paths at
runtime and dynamically optimizing code [4, 2]. None of
these techniques however apriori characterize the soft real-
time characteristics of an application. Work has been done
by Calder, et al [9] that captures statistical information (like
standard deviations) along function call-graphs and control-
flow-graphs. However, the call-graph and control-flow-graph
representations do not adequately capture the multiple con-
texts in which functions can be invoked, and force the con-
texts to be the edges of the call-graph and control-flow-
graphs. In contrast, our framework explicitly distinguishes
function-call invocations based on their dynamic context of
invocation (call-stacks), which can be much more varied.
Subsequent analysis selectively merges information across
multiple contexts if they exhibit the same behavior. Fur-
thermore, our framework is unique in allowing programmers
to incorporate in their applications a low-overhead mecha-
nism for the detection and prediction of patterns generated
during offline profile analysis of the applications.

Our analysis techniques are statistical in nature and are
robust against“outlier”behaviors that disrupt otherwise well-
formed patterns of activity. Other techniques, like Whole
Program Path analysis [8], are susceptible to disruption in
the presence of extraneous intervening program activity dur-
ing the detection of a broader pattern of activity.

1.2 Overview of Analysis Framework
Our framework first profile-instruments a C application.

It then runs our Statistical Analyzer tool that detects pat-
terns of behavior and generates prediction patterns and sta-
tistical guarantees for those. The patterns of behavior con-
sist of segments of function call-chains, annotated with the
statistics predicted for them. The call-chains are further re-
fined into minimal distinguishing call-chain sequences that
unambiguosly detect the corresponding pattern of behavior
when it starts to occur at runtime, and make statistical pre-
dictions about the nature of the behavior.

We introduce the Context Execution Tree CET represen-
tation of the profile information, and various analysis tech-
niques that can identify behavior patterns along with asso-
ciated statistical guarantees based on the CET.

2. CONTEXT EXECUTION TREE
We introduce the Context Execution Tree (CET) repre-

sentation for capturing the dynamic context of execution of
function-calls in a program, observed during a given exe-
cution of the program. Nodes in the CET represent function
invocations (calls) during the execution of the program. The
root node represents the invocation of the main function of
a C program. For a given node, the path to it from the root
node captures the sequence of parent function calls present
on the program call-stack when the function corresponding
to the node was called. Multiple invocations of a function
with the same call stack will all be represented by a single
node. However, multiple invocations of the same function
with different call-stacks will result in multiple nodes for
the same function, with the path from the root to each node
capturing the corresponding call stacks.

The CET can be constructed from a profile of program
execution. The profile consists of a sequence of function-
entry and function-exit events in the order of their occurence
during the execution of the program.

Figure 1 illustrates the structural properties of an example
CET constructed from the adjacent program. Function A was
invoked from two call-sites within the parent function P. This
leads to two children nodes for function A. Since function B

was never invoked from the left A node, it only gets a NULL
edge under the A node at the lexical position of its call-site
in the body of function A.

2.1 Node Annotations
Each CET node is annotated with the following pieces of

information about the execution of the function-call corre-
sponding to it:

1. invocation count N : The number of times the cor-
responding function-call was invoked.

2. mean X̄: The mean execution time across all invoca-
tions of the function-call corresponding to the node.
This includes the execution time of all children function-
calls.

3. variance σ
2: The statistical variance in the execution

time of the function-call across all invocations. Vari-
ance is the square of the standard deviation σ.

In Figure 1, Xi represents the sequence of execution-times
observed at each node. The std and cov annotations show
the standard-deviation and coefficient-of-variability metrics
calculated over the entire run of the application.

2.2 CET Construction Procedure
The Statistical Analyzer constructs the CET (the tree

structure) in a single pass over the profile sequence. It makes
a second pass to calculate the variance node annotations.
The profile sequence consists of the sequence of function-
call entry and function-call exit events along with the cor-
responding time-stamps. We use the dynamic instruction
count since the start of the program as the time-stamp for
each event.

3. DETECTING PATTERNSOFBEHAVIOR
Once the CET has been constructed and its node annota-

tions calculated, the CET is traversed in pre-order to deter-
mine nodes which exhibit interesting behavior as evidenced
by their node annotations. Nodes whose total execution
time constitutes a miniscule fraction (say, < 0.02%) of the
total execution time of the program, are deemed as insignif-
icant and excluded from all further analysis. All other nodes
are deemed significant. Since CET nodes subsume the execu-
tion time of their children nodes, once a node is found to be
insignificant, the nodes in its children subtrees are guaran-
teed to be insignificant as well.

3.1 Tagging Nodes
We examine the annotations of nodes to determine if the

corresponding nodes exhibit one or more of the following
types of interesting behavior:

1. low-variance: The variance σ
2 is low.

2. high-variance: The variance σ
2 is high.

In order to provide an unambiguous, program-independent
basis for comparison of variant behavior, we use the Coefficient-
of-Variability (CoV) metric [5] on each node. This is defined
as follows:

CoV =
σ

X̄

void P() {

 for (i = 0 ; i < 100 ; i++) {

 if (i % 5 == 0)

 A (0 , i) ;

 A (1 , i) ;

 }

}

void A (int flag, int i) {

 if (flag != 0)

 B (i) ;

 // other statements

}

void B (int i) {

 for (j = 0 ; j < i ; j++) {

}

1

1

1

1

1

1

10

1

1

Program
Instruction

Count

P

CET

1
0

NULL

0
0

mean = total_count/invoke_count

std = sqrt ((sum of squared distance) / total_count)

cov = std / mean

invoke_count (N) = 100

X = {2,4,6,8,12....}

total_count (T) = sum_over_i (12+2*i +1)

std = 57.73

cov =0.5154

i

invoke_count (N) = 20

X = {11,11,.....}

total_count (T) = (1+10)*20

std = 0

cov = 0

i

A

B

A

invoke_count (N) = 100

X = {1,3,5...}

total_count (T) = sum_over_i (2*i+1)

std = 57.73

cov = 0.5773

i

// Lexical id = 0

// Lexical id = 1

// Lexical id = 0

Figure 1: Sample Program, CET and Annotated Node Statistics

Once the CET is constructed from the profile data, it is tra-
versed in pre-order and using CoV values individual nodes
may be tagged as being low-variant or high-variant. As men-
tioned earlier, the traversal is restricted to significant nodes.

3.2 Signature Generation for Patterns
The next step is to find patterns of call-chains whose pres-

ence on the call-stack can be used to predict the occurence
of the interesting behavior found at the tagged nodes. For
a given tagged node P , we restrict the call-chain pattern to
be some contiguous segment of the call-chain between main

(the CET root node) and the tagged node.
The sequence of names of function-calls in the call-chain

segment becomes the detection pattern arising from the tagged
node. This particular detection pattern might occur at other
places in the significant part of the CET. Quite possibly, the
occurence of this detection pattern elsewhere in the CET does
not lead to the same interesting statistical behavior that was
observed at the tagged node. Therefore, our key criteria in
generating the detection pattern is the following:

All occurences in the significant CET of a detection pat-
tern arising from a tagged node must exhibit the same
statistical behavior as at the tagged node.

Notice that this condition is trivially satisfied if we allow
our detection pattern to extend all the way to main from the
tagged node, since this pattern now cannot occur anywhere
else in the CET. In many applications, patterns that extend
to main are likely to generalize very poorly to the regres-
sion execution of the application on arbitrary input data.
Regression execution refers to the real-world-deployed exe-
cution of the application, as opposed to the profile execution
of the application that produced the profile sequence used
for constructing the CET. In most applications we expect that
the statistical behavior of the function call at the top of the
stack can be predicted using a short sequence of function-
calls occuring just below it in the call-stack, without going
all the way to main. In this paper we direct our attention
towards detecting just such call-sequences. We call these
Minimal Distinguishing Call Sequences (MDC) correspond-

ing to any given statistical behavior. These are the shortest
length detection sequences whose occurence predicts the be-
havior at the tagged node, with no false positive or false
negative predictions in the significant portions of the CET.

Given a tagged node P that is a call-instance for function
F , the MDC is constructed by extending the parent call-
chain starting at P until the call-chain is just long enough
to be different from a call-chain of the same length originat-
ing at any other significant instance of F in the CET, that
does not match the statistical behavior of P . Significant
instances of F that match the behavior at P and have iden-
tical distinguishing call-contexts are detected by the same
MDC, effectively merging them with P .

3.3 Scheme for Detecting Patterns at Runtime
The application code can be easily modified by the pro-

grammer to incorporate the detection of specific MDC se-
quences that the programmer determines as being most use-
ful to detect. Given a MDC sequence the programmer has
to instrument the function-calls that occur in it. If the
MDC sequence is a call-chain of length k, then let MDC[0]
denote the uppermost parent function-call, and MDC[k−1]
denote the function-name of the tagged node that gener-
ated this MDC sequence. Therefore, the pattern will be
detected to have occured if the MDC[k − 1] function is
pushed at the top of the call-stack that already contains
MDC[k − 2] · · ·MDC[0] function-calls just below in the
stack. And over multiple occurences of this same pattern
at runtime, the observed statistics are expected to match
the behavioral statistics of the tagged node in the CET that
generated this MDC sequence.

3.4 Early Prediction of Call-Chain Patterns
In the previous discussion, a pattern could only be de-

tected at runtime whenever its corresponding call-chain seg-
ment occured in full. Only when the entire call-chain pat-
tern occured on the call-stack, could a prediction about the
execution time of the MDC[k − 1] function be made. How-
ever, with additional analysis, it is possible to observe the
occurence of only a prefix of the pattern and predict with

Benchmark Pass Time (seconds) Pattern Results

Profile Regression Profile Regression
Pass 1 Pass 2 Pass 1 Pass 2 Events Events Low-Var High-Var

mpeg2enc 91 263 1877 1881 10000000 30000000 33 (33, 31) 24 (12, 21)
mpeg2dec 92 490 1584 1618 10000000 30000000 17 (13, 14) 31 (30, 31)
h263dec 44 254 1783 1809 5000000 25000000 32 (26, 29) 28 (26, 26)

Key to Pattern Results

Pattern type During Profiling During Regression: observed characteristics of patterns
Low-Var Number of such patterns detected (patterns that remained low-variance, patterns with unaffected means)
High-Var Number of such patterns detected (patterns with unaffected σ, patterns with unaffected means)

Table 1: Patterns Found in Benchmarks

high probability that the remaining suffix of the call-chain
pattern will occur (with the behavior statistics associated
with the full pattern). This prefix-suffix analysis is done
by examining each possible prefix of a pattern at a time.
For a given prefix, the ratio of the occurence count of the
full pattern in the CET against the occurence count of just
the prefix serves as the prediction-probability that the corre-
sponding suffix will occur in the future given that the prefix
has been observed on the call-stack.

4. EXPERIMENTAL EVALUATION
The Statistical Analyzer tool is written entirely in python

and did not use any high-performance numerical or scientific
libraries (such as NumPy or SciPy). We used the LLVM
compiler infrastructure to automatically profile instrument
applications in the MediaBench II suite. Table 1 shows the
number of profile events that were used to generate patterns,
and the number of regression events that were used to sim-
ulate detection of the generated patterns in the real-world
execution of the corresponding application. We produced a
profile sequence for each benchmark using the input data
sets provided with the benchmark suite, or some larger ex-
ternal data sets if such profiles were too short.

The Statistical Analyzer first uses a prefix of the profile
(approx. 5 to 10 million events) to identify interesting sta-
tistical behaviors and generate detection patterns for an ap-
plication benchmark. Then, the Statistical Analyzer reads
the entire profile (approx. 25 to 30 million events) in the
regression run of the application. The regression run simu-
lates the application call-stack using the profile events. No
CET is constructed and no analysis is performed during re-
gression. We use a generic finite-state-machine sequence de-
tector to detect the occurence of the patterns at the top-
of-the-stack. Such a sequence detector needs to check the
call-stack for the possible occurence of each pattern at ev-
ery profile event, thereby causing the regression passes to
be significantly slower than the corresponding profile passes
(Table 1). However, the techniques we proposed for the ac-
tual runtime detection of patterns in applications (see Sub-
section 3.3) are quite lightweight as they require the instru-
mentation of only the functions and call-sites that occur in a
pattern. Mean and variance statistics are calculated based
on data collected for each pattern during regression. Ta-
ble 1 shows the number of patterns of each type generated
during profiling, and for how many patterns the regression
statistics closely matched the statistics predicted by the pro-
filing stage. The subtable titled “Key to Pattern Results”

explains how to interpret the results under the “Pattern Re-
sults” columns. The results show that, for almost all pat-
terns, the predicted statistics closely match those observed
when the patterns are detected during the regression run.

5. CONCLUSION
We have demonstrated that the combination of statisti-

cal pattern classification techniques and distinguishing call-
chain sequence extraction techniques provides a powerful
framework for the analysis and design optimization of soft
real-time applications. Our experiments show that the gen-
erated patterns and their associated statistics are generaliz-
able to the real-world execution of the application.

6. REFERENCES
[1] Arnold, M., Hind, M., and Ryder, B. G. Online

feedback-directed optimization of java. In OOPSLA
’02: Object-oriented programming, systems, languages,
and applications (2002), pp. 111–129.

[2] Bala, V., Duesterwald, E., and Banerjia, S.

Dynamo: a transparent dynamic optimization system.
In Programming Language Design and Implementation
2000 (2000), pp. 1–12.

[3] Bernat, G., Colin, A., and Petters, S. Wcet
analysis of probabilistic hard real-time systems, 2002.

[4] Burke, M. G., Choi, J.-D., Fink, S., Grove, D.,

Hind, M., Sarkar, V., Serrano, M. J., Sreedhar,

V. C., Srinivasan, H., and Whaley, J. The jalapeno
dynamic optimizing compiler for java. In ACM
Conference on Java Grande 1999 (1999), pp. 129–141.

[5] Freund, J. E., and Walpole, R. E. Mathematical
statistics (4th ed.). 1986.

[6] Hall, R. J. Call path profiling. In ICSE ’92:
Proceedings of the 14th international conference on
Software engineering (1992), pp. 296–306.

[7] Kavi, K. M., Youn, H. Y., Shirazi, B., and

Hurson, A. R. A performability model for soft
real-time systems. In 27th Hawaii International
Conference on System Sciences (1994), pp. 571–580.

[8] Larus, J. R. Whole program paths. In Programming
Language Design and Implementation 1999 (1999),
pp. 259–269.

[9] Sherwood, T., Perelman, E., Hamerly, G., and

Calder, B. Automatically characterizing large scale
program behavior. SIGOPS Oper. Syst. Rev. 36, 5
(2002), 45–57.

