

A Profile-Driven Statistical Analysis Framework for the Design Optimization of Soft Real-Time Applications

Tushar Kumar¹, Jaswanth Sreeram², Romain Cledat², Santosh Pande²

¹School of Electrical and Computer Engineering, ²College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

tushark@ece.gatech.edu, jaswanth@cc.gatech.edu, romain@cc.gatech.edu, santosh@cc.gatech.edu

Motivation

 Lack of a formal methodology for the design and optimization of Soft Real-time applications

- Monolithic C/C++ applications: Games, multimedia
- Difficulty in capturing Soft Real-time requirements using formalisms from Hard Real-time (*Deadlines*, *Tasks*)

"Achieve 30 frames-per-second on average, and stay within 5 fps of average frame-rate with > 95% probability"

 Soft Real-time applications need to meet statistical execution-time requirements under common or representative data and usage scenarios

Analysis and Optimization Methodology

• Automatically characterize the variability in the execution of an application, and *construct patterns that predict* the variable behavior in a *statistically reliable manner*

- Applications driven with *representative data sets* (profiling)
- Determine selective occurrence of variation behavior based on calling-context
- Summarize the most significant application-wide variation behavior using few patterns

Total dynamic instruction count used for time-stamps

Time complexity = $\theta(N_{Prof})$ N_{Prof} = # of profile events

main

. . .

 \mathbf{F}_{3}

Η

Tagging Interesting Nodes

call ontet of the For any node F: $COV_F = \sigma_F / \mu_F$

 $cov_{F} > high_{threshold}$ → Tag F as high-variant

 $cov_{F} < low_{T}$ threshold → Tag F as low-variant

- Patterns direct programmer's attention to the functions and corresponding calling-contexts that *most significantly* affect and predict the application's Soft Real-time characteristics
- High-variance: execution of function F in given call-context contributes significant variability to the execution time of enclosing scopes
- Low-variance: F under given call-context significantly dampens variations in enclosing scopes
- Many other interesting behaviors (such as, correlated execution times) can be similarly detected as patterns
- Programmers can even detect call-contexts of patterns at runtime, and explicitly adjust program activity based on statistics associated with corresponding patterns

Nodes *significant* in execution time

 F_2

Nodes *insignificant* in execution time

Generating Patterns

Minimal Distinguishing Call-Context Patterns for High-Variance

Low-Variance

High-Variance

Pattern

	Profile	Regression	Patterns			Patterns		
	Steps	Steps	Regression			Regression		
Benchmark	(Pattern Extraction)	action) (Testing action) Patterns)	# Extracted	Remain Low-Var	μ not affected	# Extracted	σ not affected	μ not affected
mpeg2enc	10 Million	30 Million	33	33	31	24	12	21
mpeg2dec	10 Million	30 Million	17	13	14	31	30	31
h263dec	5 Million	25 Million	32	26	29	28	26	26

Key Contribution

Combination of Profiling, Program Representation, Statistical Metrics, and Distinguishing Sequence Extraction techniques allow for a fast, automatic determination of the program contexts that most significantly affect and predict an application's Soft Real-time behavior.